"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

E02.22/A4-12

NEURAL NETWORK BASED INERTIA IDENTIFICATION OF
ELECTRICAL DRIVE SYSTEMS

LILIANA DAFINCA
"TRANSILVANIA" University of Bragsov, 29 Eroilor Blvd., 2200 Brasov, ROMANIA
Tel.: 0040-68-418836, Fax: 0040-68-143116
E-mail: dafinca@unitbv.ro

Abstract. The paper advances the using of a neural
network to estimate the total inertia moment of the
motor and mechanical system. Identification of inertia
moment is an important objective for designing the
speed control system. The inertia is identified by the
pattern recognition of the neural network trained
through step command tracking speed responses, for
various incrtia values. To obtain the speed responses due
lo step command change, an acquisition system has been
developed. The optimal topology of the neural network
has been chosen using an original softwarc tool for
designing of neural networks based applications [1].

1. Introduction

The basic idea of the identification method is the
relation between the shape of the drive speed response
for the stepwise spced command and the valuc of the
inertia moment. Therefore, having the speed response
for the stepwise speed command, one can somehow
oblain the inertia moment. This mcthod belongs 1o the
pattern recognition category of applications. The ncural
networks are adequately suited for this type of
applications.

Actually, a neural network is a machine like the
human brain with the properties of learning capability
and generalization. It is used to represent functions as
weighted sums of nonlinear terms. The learning
capability makes it able to approximate very
complicated nonlinear functions, and consequently a
neural network can be a universal approximation of
almost any dynamic system. The gencralization property
allows to train neural networks with a limited training
data set. Although these networks eliminate the need for
mathematical models, they require a lot of training to
understand the model of a plant or a process.

2. Feedforward Neural Networks

The artificial neural networks use a dense
interconnection of neurons that correspond to computing
nodes. Each node performs the multiplication of its
input signals by constant weights, sums up the results,
and maps the sum to a nonlinear function (activation
function). The result is then transferred to its outpul.

A feedforward neural network, which is most
widely used in applications [3], is organized in layers:
an input laycr, one or more hidden layers, and an output
layer. The inpul values are converted through the

normalizer gains. No computation is performed in the
input layer: the signals are directly supplied to the first
layer. Hidden and output ncurons generally have a
sigmoid aclivation function. The mathematical model of
a neuron is given by Fig. 1 and relations (1) and (2).

Fig. 1. The model of a ncuron

i j 1 .
yi=Jx) = l_ex,'b i-= l,2,...,n, (1)

x =Y Wy @

-~
@

The notations from (1) and (2) are:
[the number of layers excepling the input (2 or 3);

y! the output of neuron i al layer /;

x! the sum of the inputs to node i at layer /;

f the activation {unction of the neuron (here it is a
sigmoid);

g the gain of the sigmoid function;

n, the number of neurons at layer L.

W, the connection weight from the jth node at layer

I-1 1o the ith nodc at layer .

Fig. 2 shows the topology of the ncural network
used for the identification of the incrtia moment. A
three-layer topology has been used. The inputs of the
neural network are the time basis plant speeds for the
stepwise command and the output is the cstimated
incrtia moment. After computation, the output is brought
back to the aclual valucs through denormalizer gains.
The number of hidden nodes has been chosen by trials.
Using normalization-dcnormalization techniques, the
robustness of the network is enhanced.

The knowledge in a neural network is acquired
through a lcarning algorithm, which performs the
adaptation of weights of the network iteratively until the
error between the larget vectors and output of the
network falls below a certain error goal.

346

"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

Normalizarion

Input 7
layer Wi
=9

Hidden
layer
a=n

5 Output
layer
=2

W 14

Fig. 2. The ncural network uscd for incrtia identification

Soft
controlled
switch

Induction machine
with variable
inertia moment

Signal ‘

conditioning

Tachogenerator

Acquisition
program

rc

Fig. 3. The block diagram of the system used for inertia identification

3. Identification Method of Inertia

The total inertia moment of the motor and
mechanical system has been obtained using the system
shown in Fig. 3. A multifunction /O board
(PCI-MIO-E1) allows 12 bit A/D conversions with a
sampling ratc of 1.25 MS/s. The FIFO buffer of
PCI-MIO-E1 has had 512 samples.

The parameters of the induction motor used for
experiments arc:

P, =1,1kW;
I,=293 A;

p = 4 pole pairs;
Jyy =0.017 kg'm?,

Uy=220V;

/=50 Hz;

ny = 1500 rpm;

Jueno = 0,388 kg-em?.

The teachers of the neural network arc the speed
samples at the power on under the various system
inertia.

Fig. 4 presents thcse teachers obtained by
simulation for three differcnt inertia moments, where J,
denolcs:

Jo=Iu +Jacho-

An experimental acquisition is shown in Fig. 5. it
can be noticed that the simulation and the acquisition
waveforms are similarly.

The acquisition program has becn carried out using
LabWindows CVI, a Rapid Application Development
software.

For experiments, the incrtia moment has been
increased using mechanical systems with known inertia
moments.

The neural network from Fig. 2 can also be used in
the inertia identification of the speed control system in
Fig. 6. The control model in Fig. 6 has the same PI
controller as that of the plant and the tcachers of the
ncural nctwork are the time basis speed responses under
the various system incrtia shown in Fig. 7.

"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

Fig. 5. An experimental acquisition used as leacher
for the neural network

4. The Backpropagation Training Algorithm

The most popular learning algorithm for
feedforward neural networks is the backpropagation
algorithm, which consists of a forward and backward
action. In the first, the signals are propagated through
the network layer by layer. An output vector is thus
generated and subtracted from the desired output vector.
The resultant error vector is propagated backward in the
network and serves to adjust the weights in order to
minimize the output error.

The time required to train a neural network
depends on the size of the training data set, the size of
the neural network and the training algorithm. The
standard version of the backpropagation algorithm is
very slow and requires a large number of iterations.
Improved versions of this algorithm permit the reduction
of the number of iterations. These versions are the
backpropagation with momentum and the adaptive
learning rate. The neural-network development system,
used here [1], combines both accelerating methods of
the training process and allows the variation of the
momentum factor while the training performs.

The connection weights are obtained based on a
training data set. Training data consists of input-output
pairs generated by the process which the network is to
emulate. For the proposed application, the set of training
patterns is:

drive system

Fig. 7. Step speed responses waveformes

(X150, 071D i=1,2,..,.M}
X050 - [x(1],...x"[50]] 3)
O/11- [o/[1]}

where:

X[50] is the input vector at layer 0 according to the
pattern i (50 samples of step speed response);

O?F[1] s the output vector at layer 2 provided by the

pattern i (the inertia moment for X,°[50] step
specd response);
M is the number of training patterns (M = 3 for
this application).
The backpropagation training algorithm [3] can be
summarized as follows:

Step 1.
At the beginning the connection weights have
small values obtained randomly.

Step 2.
For a training pattern (X°[50], O’[1]) chosen
randomly, the weights of the net are recursively
calculated.
First, the output of the network:

Y1) = U]
is calculated according to (1), (2) by forward
computation using the corresponding inputs:

348

"ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

X[50] = [x[1], x°[2], ..y x1[50]]

Then, the error signals for the third layer neurons
are obtained using the relation:

8;11- B3/ [11(1-». 11D T11-¥7[1]) “

where:

8/[j] is the etror signal for the neuron J at layer /
provided by the pattern i;

0/[j] is the desired output for the neuron j at layer
I provided by the pattern i;

¥{[j] is the real output for the neuron Jj at layer /
calculated with current weights.

The error signals for the second layer are obtained

in a similar way:

8,U1- By 110 -¥, DY, 8}41 w271)

Error signals are used to adjust the weights of the
ncural network. So the weights are updated
according to the relations:

Wi+ 1)=Wi(i)+n 8;()y, ()-aA 40 ©

Wi 1) Wai(i) o & Jx0() aA WD)

where the notations are:

o is the momentum factor chosen by trials
as 0.9;

n is the learning rate chosen by trials
between 0.05 - 0.25;

W,/({) s the connection weight at the step i
from the jth node at layer / to the gth
node at layer -1;
AW, () is the momentum, i.c.:
AW/() = W) - W,ii-1)
Step 3.

Error is calculated as in relation (7).

E[ﬂ-%(ofm- ¥ UD? =\, M @

It the error is acceptable for every pattern, the
training is completed. Otherwise another training
cycle is necessary (Step 2).

Combining several accelerating methods, the
efficiency of the training program is improved.

The training algorithm has been implemented in
C++ programming language for Windows '95. The user-
[riendly graphic interface of the program allows
initializing the neural network for a specific application.
So that the number of neurons at every layer, the
momentum factor, the learning rate can be chosen as
program options. The training patterns have been kept
in ASCII files produced by simulation or acquisition
programs. Also, the weights obtained during the training
are saved in an ASCII file. This file will be used aftcr
training, for identification.

The neural network software can be used to train
any multilayer neural network.

349

5. Simulation and Experimental Results

The simulation is very important to choose the
appropriate topology of the neural network. Since the
number of neurons in the input and output laycers is
determined by the external information (in this special
casc, 50 inputs and one output), the only possible
selection is the number of the hidden neurons to rcduce
the required amount of calculation.

Considering that the neural network is completely
traincd for three patterns (according to Fig. 4), the
simulation results obtained for 8, 12, 15, 18 or 24
hiddcn ncurons are given in Table I and Fig. 8.

Table 1. Simulation resul_ts. B -
Error | Error | Error | Error | Error |

Real/ (%) | (%) | () | %) | @)
(kg'm?) m=8 n=12 | n=15|n,=18 | n,=24 |
J=0017 [0 |0 |0 | o [o 1
L5J,=0.0255 -49 |51 -3 |- 373]- 256 |
| 2,=0.034 o o :_() 1o |o |
3=0051 | 383 |87 |-08 | 3.79|- 7.8|
47,=0.068 |-0.49 | 1058 |-0.94 | 7.86 | 11.74]
| 9,008 [0 |0 o0 | o o |

30

© S e 25us 3ws 35w s ASuhe Sue 35ne Gule
J el (U

Fig. 8. Identification crror for different values of total
inertia moment

According to [2], [3] elc., the selection of a greater
number of hidden neurons results in a better accuracy of
the net with the price of the amount of calculations. But
the investigations shown in Fig. 8 have revealed that
selecting more or less 15 nodes in the hidden layer, the
accuracy becomes worse. The reason for such behaviour
is the presence of local minima in the traiming algorithm.
They appear for 12, 18 or 24 hidden nodes a nd they act
like atractors. Obviously, the amount of calculation
increases with the number of neurons.

From Fig. 8, it can be noticed that the crror
becomes unsatistactory if the inertia moment is greater
than the inertia used as patterns.

Having tested the validity of the proposed
identification method by simulation, the implementation

“ELECO'99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

is carried out. The experimental results (Table 1I)
confirm the effectiveness of this method obtained for the
topology 50-15-1.

Table IL Exper lmc_ntal results.

Real J (kgm?) | Error (%) for n,=15

~ 7,=0017 | 0
15J=00255 | -281
27,=0.034 | 0
320051 | -09
4J,=0.068 =1l
5/,=0.085 | 0

It can be noticed that the simulation and
cxperimental results are nearly the same because of the
noise tolerance of the neural networks.

For the closed loop system (Fig. 6) and the
teachers given in Fig. 7, the accuracy is worsc (Table
1) because the controller “hides” the information
coniained in the spced step responses. In spite of the
closeness of the patterns, the results are satis{actory.

Tablc UL Identification results for closed loop system.

Real J (kg'm?) Error (%) for n=15
J,=0017 | 0
1.57,20.0255 | 178
27,=0.034 | 0
T 37,-0.051 | 6.83
47,0068 | 423
5J,=0.085 | 0

6. Conclusions

The simulation results and the experiments have
confirmed the validity of the proposed identification
algorithm, Obviously, to oblain maximum of
information for the training patterns, the speed samples
should result from the transient conditions.

The implementation of the neural network based
applications can be made by using PC sofiware
simulation, by dedicated analog or digital neural
network chips and by DSP boards.

The parallel architecture of the two latter
categories is based on multiple processing units that are
interconnected to achieve high-speed computation at
low-cost.

The recent rapid and revolutionary progress in
microelectronics has made it possible to use neural
networks in common applications. Nevertheless, PC
software simulations arc necessary as a first step to
develop any ncural network bascd application.

Low-cost implementation possibilities and the
effectiveness of neural networks in many industrial
applications ([4}], [5], [7], etc.) motivale to pursue
further research in this arca.

References

1. L. Dafinca; R. Craciun: "A software tool for
designing of neural network based applications”,
Bulletin of the Transilvania University of Bragov,
Vol. 6 (41) - 1999;

2. D. Dumitrescu, H. Costin: "Rejele neuronale.
Teorie si aplicatii” (Neural networks. Theory and
Applications), Ed. Teora, Bucuresti, 1996;

3. S.T. Welstcad: "Neural Network and Fuzzy Logic
Applications in C/C++", Wiley Professional
Computing, New York, 1995;

4. M. T. Wishart, R. G. Harley: "Identification and
Control of Induction Machines Using Neural
Networks" IEEE Trans. Industry Applications,
Vol. 31, No. 3, pp. 612-619, May/June 1995;

5. L. Dafinca: "Adaptive Control Systems Based on
Neural Networks", Lectures Notes in Computer
Science -Computational Intelligence, Vol. 1625,
pp. 615 - 625, Springer-Verlag, 1999;

6. B.Kosko: "Neural Networks and Fuzzy Systems”,
Prentice Hall International, 1993;

7. N. Matsui: "Applications of Soft Computing to
Motion Control", Proc. of AMC '98 COIMBRA,
pp- 272-281, 1998.

350

