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ABSTRACT 

In this paper, a controller design method for linear MIMO 
systems is presented which a sliding mode controller is 
reconfigured in case of system faults. Faults are detected 
with the residual vector generated from a standard linear 
observer. Once a fault has been detected the fault 
distribution matrix can be obtained and used to update the 
corrective gain vector of the sliding mode controller. As a 
result, a fault tolerant adaptive controller keeps the system 
performance within acceptable limits. 
 

I. INTRODUCTION 
Progresses in control theory and computer technology 
stimulated a continuous improvement in control 
techniques in last decade. In the mean time the control 
systems became more and more sophisticated and 
complex. These complex systems require a high degree of 
reliability and maintainability and they must have fault 
accommodation in order to operate successfully over long 
periods of time [1]. Re-configurable control is a solution 
to achieve this goal and applied mainly in three situations: 
[2] 
 
•� to keep the system performance within acceptable 

boundaries during operation, 
•� to increase the performance of the process, 
•� to achieve the goal for fault accommodation. 
 
Reconfigurable control is a critical technology [3, 4] with 
its objectives to detect the fault and recover the 
functionality of the faulty system as same as that of the 
nominal system [5]. Various methods are used for 
reconfigurable control to cover the requirements of 
different applications.  The behaviour of the 
reconfigurable control depends upon whether the 
approach is passive or active.  Such control ideas have 
been implemented on a variety of military and 
commercial applications in last two decades to 
accommodate faults, for example on flight control 
systems in [6, 7, 8, 9] on space technology in [10, 11] and 
on unmanned underwater vehicles in [12].  

The idea to use variable structure system theory with 
sliding mode control [13] for reconfiguration purposes 
stems from the fact that this method alleviates the 
problems caused by uncertain or changing system 
dynamics or parameters. This is the case when a fault 
occurs in a system component. Variable structure systems 
with sliding mode control were first proposed in the 
1950's [14]. Sliding-mode controllers nowadays enjoy a 
variety of applications such as in aerospace applications, 
in process control, in motion control applications and 
robotics [15, 16]. The main reason for this popularity is 
their attractive properties such as applicability to multi 
input multi output systems, good control performance for 
nonlinear systems and well established design criteria for 
discrete time systems. The most significant property of a 
sliding mode controller is its robustness when 
uncertainties are inserted into the system.   
 
The reconfiguring control for fault accommodation 
purposes has usually been achieved by mainly adaptive 
controllers [2]. Up to the knowledge of authors, the novel 
idea proposed is the first application of variable structure 
system method as an active reconfiguring controller for 
fault accommodation. Here, the fault distribution matrix is 
used to switch the corrective gain vector of the sliding-
mode controller in an adaptive manner to compensate the 
uncertainty inserted into the system dynamics due to 
system fault. Applicability of the proposed algorithm is 
shown for the reconfiguration of a sliding-mode controller 
for a simple MIMO linear system. The objective of the 
controller is to control the MIMO system under nominal 
operation, as well as in case of an abrupt fault. The 
mentioned gain vector is switched back to its nominal 
value when fault detection scheme detects that the related 
system component acts nominally.  
 
The proposed method aims to avoid chattering for the 
nominal plant, nevertheless, to keep the process in 
operation by increasing the robustness of the controller 
with a larger gain for the faulty plant in accordance with 



the size of the fault distribution matrix. It is required to 
avoid an increase in the controller gain and, hence, in the 
chattering, for the nominal plant; but for the faulty plant 
the robustness is a delicate subject to be considered to 
keep the plant running with an acceptable performance. 
Here, a trade-off appears between the decision of 
chattering and robustness levels. 
 
The proposed algorithm can be implemented for 
autonomous underwater and space vehicles when there is 
no way to stop the process and fix the faulty system 
component. Torpedo and missile guidance systems can 
also be considered as military applications. 
 

II. FAULT DISTRIBUTION MATRIX 
It is stated in many research results on FDI that a 
reasonable model for FDI purposes is the one which has a 
description about the system uncertainty e.g. its 
distribution matrix or spectral bandwidth (See for 
example [17] ). In this work, it is assumed that there is no 
disturbance for modelling uncertainty or at least 
modelling uncertainty can be handled with sliding-mode 
controller. On the other hand, a typical description for the 
system uncertainty caused by system faults can be 
represented with the following linear model of the system. 
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where ( ) nt ∈ℜx is the state vector, ( ) rt ∈ℜu  is the 

control input vector and ( ) mt ∈ℜy is the measurement 

vector, ( ) gt ∈ℜf represents the fault vector which is 
considered as an unknown time function. A, B and C are 
system parameter matrices and the pair { },C A is assumed 
to be observable. Here R matrix is the distribution matrix 
of a system fault.  
 
By means of an observer, the residual can be generated as, 
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where ( ) pt ∈ℜr is the residual vector, x̂ is the state 
estimates. By defining the state estimation error vector as 
residual vector, 
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error dynamics can be written as, 
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From (2), the disturbance distribution vector ( )tRf follows 
that, 

( ) ( ) - - ( ).t t t=Rf e (A L)e�  

 

III. CONTROLLER DESIGN 
The controller is a modified version of standard sliding-
mode controller. Sliding-mode controller is robust to 
model uncertainties when the upper boundary of the 
uncertainty is given. Assume there is no information for 
the upper boundary of the uncertainty caused by model 
mismatch or a system fault. In that case, the proposed 
methodology replaces the corrective gain vector with the 
disturbance distribution vector to achieve the acceptable 
performance criteria. Consider a general linear MIMO 
system of the form in (1). In order to achieve all states of 
the system in (1) to track the given desired trajectories at 
the same time, the switching surface function is defined as 
follows [18], 
 

( ) ( ) ( )                             (3)t t t dt= + �s x � x� �  

 
where s is the sliding surface vector of components, �  is 
a scalar vector which defines the slopes of the sliding 
surfaces, x� is the state error vector and defined as, 
 

d= −x x x�  
 
where x is the actual state vector and dx is the desired 
trajectory vector. A Lyapunov function is defined as, 
 

1
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which is positive definite and it is required that the 
following condition must be satisfied for overall system 
response to be stable, 

 
                            0                  0t< ∀ >V�  

 
The dynamics of the sliding surface can be written as 

 
0=s�  

 
First derivative of sliding surface function in (3) becomes 
[18] 
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By solving the above equation from (1) and (4), the 
control input can be obtained as, 
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Assuming nB is invertible, 
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where equ is the equivalent control term of the overall 
controller which guarantees system states to track the 
desired trajectories. 

 
It is clear that all terms are known except fault distribution 
matrix in (5). To satisfy the sliding condition a corrective 
control term is used for sliding mode controllers. The 
overall controller with the corrective control term will be 
derived as [18], 
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where k is the corrective gain vector which is used to 
guarantee a sliding regime on the switching surface vector 
s(t) and a soft switching function is used to avoid 
chattering for the nominal plant, 
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As the fault distribution vector ( )tCRf term inserted into 
the controller scheme, the controller runs in a 
reconfiguring adaptive manner and makes it possible to 
accommodate with system faults. The system fault is 
detected by comparing any component of residual vector 
with any corresponding scalar threshold component which 
is found by trial and error. 
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IV. DESIGN EXAMPLE AND SIMULATIONS 

Consider state-space representation of a MIMO system as 
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A system fault is inserted into the system matrix A 
consequently, the state space representation of the faulty 
system becomes, 
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The MIMO linear system given as an example has two 
eigenvalues, one of them is unstable and the other one is 
stable as follows, 
 

1 22.0397 3.0397µ µ= − =  
 

During faulty situation unstable eigenvalue becomes 
stable and unstable one becomes stable. Eigenvalues for 
the faulty case are: 

1 219.6510 8.6510α α= = −  
 

It can easily be checked that the state vector is observable 
from both outputs. 
 
A linear observer is designed to observe the system 
outputs with the following gain matrix, 
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Now, the fault information within fault distribution matrix 
will be obtained as follows, 

 
 

1

2

1 1 2

2 1 2

( ) ( ) ( ) ( ),

1 0 2 0.1 21 17.9 1 0
( ) ,

0 1 2 3 1692 21 0 1

( ) 23 0.1

( ) 2 18

t t t

x
t

x

r t x x

r t x x

= − −

� − − �� �� � � � � �� �� �= − −� 
� 	� 	 � 	 � 	� 	
� �
 � 
 � 
 �
 � 
 �� �

+ −� �
=� 	− +
 �

CRf r C A LC e

r

�

�
�

�

� � �

� � �

 

 
Each fault distribution vector term has been inserted into 
the corrective gain vector of standard sliding-mode 
controller as an additive gain as can be seen in (5). In 
other words, the controller transformed to run in an 
adaptive manner in case a fault detected in the system 
dynamics. Matlab-SIMULINK software has been used for 
simulations. A bias system fault as given in (6) inserted at 
1.25 sec. into the nominal system and this fault has been 
removed at 1.75 sec. of the simulation.  
 
It is observed that the standard sliding mode controller 
can not cope with the structured (or parametric) 
uncertainties [18] inserted into the system as a result of 



the system fault.  On the other hand proposed controller 
scheme performs fault tolerant control satisfactorily.  
 
As can be seen from Fig. 1 the controller can not perform 
the desired trajectory task. It is also observed that the 
control inputs are out of realistic values during the faulty 
period as can be seen from Fig. 2. 
 
Faults can be detected by means of residuals as can be 
seen from Fig. 5. Also, proposed reconfiguring sliding 
mode controller copes satisfactorily with the mentioned 
uncertainties by updating the correcting gain vector by 
means of inserting disturbance distribution vector as an 
additive term as can be seen from Fig. 3 and 4.  In return, 
fault tolerant control is accomplished with reconfiguring 
sliding mode controller. 

 
V. CONCLUSION 

A reconfiguring sliding mode controller proposed for 
linear MIMO systems. Reconfiguring controller alleviates 
the disturbances inserted into the system dynamics in case 
of a fault by reconfiguring the corrective gain vector term 
of the sliding mode controller in an adaptive manner. It is 
observed that the standard sliding mode controller can not 
cope with uncertainties due to system fault. On the other 
hand, proposed control scheme satisfactorily cope with 
mentioned uncertainties. The algorithm based on the 
extraction of fault distribution information from system 
dynamics by means of a linear observer. This method is 
an example for the integration of fault detection methods 
with fault tolerant techniques. The proposed controller 
scheme can be called as an active reconfiguring scheme.  
 
This method can be implemented for the control of 
autonomous underwater and aerospace vehicles especially 
when there is no way to terminate the process and fix the 
faulty system component. Military applications are the 
candidates for this method such as torpedo and missile 
control systems.  
 
Further steps to be taken include the extension of this 
method is to achieve the fault tolerant control goal for 
general nonlinear MIMO systems together with nonlinear 
observers. 
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Fig. 1 Actual and desired trajectories with standard sliding 
mode controller. 
 

 
 
Fig. 2 Control Inputs with standard sliding mode 
controller. 
 

 
 
Fig. 3 Actual and desired trajectories with proposed 
reconfiguring sliding mode controller. 
 

 
 
Fig. 4. Control Inputs with proposed reconfiguring sliding 
mode controller. 
 

 
 
Fig. 5. Components of residual vector . 


