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Abstract

The paper deals with frequency-domain models of 

memristor, memcapacitor, and meminductor, and their use 

in the steady-state analysis by means of the harmonic-

balance method. The models are based on a polynomial 

approximation of constitutive relations, allowing analytical 

formulation of relations between the spectral components of 

stimulus and response, for both periodic and quasi-periodic 

steady-state conditions. It is not necessary to transform 

signals between the time and the frequency domains to 

obtain the mem-element response. Example analyses 

demonstrate the model use.

1. Introduction

The steady-state analysis represents an important tool for the 

characterization of electrical circuits. In the case of linear time-

invariant circuits, the harmonic steady state can be obtained 

using the Heaviside operator method, which is well-known as 

the AC analysis. The purpose of the paper is to present simple 

analytical frequency-domain models of mem-elements, which 

are suitable for steady-state analysis by means of the Harmonic 

Balance method [1].

The fabrication of memristor in 2008 in the form of a 

nanoscale device by HP laboratories [2] triggered a wave of 

interest in mem-systems. As the HP memristor is still not 

available for researchers, any verification of proposed circuits is 

based on simulations or emulations [3], [4].

A number of models of memristor have been proposed so far; 

see [5], [6], [7] and the references therein. The models are more 

or less based on the HP memristor, which is not an ideal element 

but a generalized memristive system [8].

In addition to memristive systems, there are memcapacitative 

and meminductive systems as well as their special subsystems, 

namely memcapacitors and meminductors [9], [10].

An entirely new approach to modeling was proposed in [11]

and [12]. The proposed models are based on explicit 

constitutive relations of ideal mem-elements.

For example, the two possible constitutive relations of ideal 

memristor have the form
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are the flux and the charge, respectively, while !(q)' and q(!)

are the nonlinear constitutive functions for charge- and flux-

controlled memristors, respectively.

Memristor terminal quantities are then [11]
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memresistance and the memconductance, respectively.

The method of harmonic balance (HB) [1] is suitable for 

cases where the waveforms of all circuit quantities can be 

approximated by a relatively small number of harmonic 

components X(k), i.e. by
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where the set of frequencies !k is chosen before the analysis.

The port voltage-current relations of individual network 

elements have to be transformed into the operator domain, 

assigning a vector of spectral components of response quantity 

to a given vector of stimulus. It is a trivial task for linear circuit 

elements. However, it requires a rather complicated processing 

in the case of nonlinear components including transformations 

between the frequency and the time domains [13].

Although the memristor is a nonlinear element, the model 

(1)-(3) allows an explicit calculation of spectral components of 

the response variable in case constitutive relation (1) is 

expressed as a polynomial.

Section 2 of the paper deals with deriving frequency-domain 

models of mem-elements, and section 3 gives a numerical 

example.

2. Frequency-Domain Models of Mem-Elements

2.1. Memristor

In the case of the charge-controlled memristor, terminal 

voltage v can be calculated from the independent terminal 

current i (stimulus) as follows

i(t!"#"q(t!"#"RM(q!"#"v(t) = i(t) RM(q) , (5) 

and vice versa for the flux-controlled memristor
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v(t!"#"!(t!"#"GM(!!"#"i(t) = v(t) GM(!) . (6) 

Let us suppose that the constitutive relation (1a) of a charge-

controlled memristor is expressed in the polynomial form as
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where rk are the polynomial coefficients.

Let us further suppose that the system under analysis is in the 

periodic steady state with one fundamental frequency !0, and 

that the time domain waveforms are approximated by N

harmonics. Then the independent terminal current i can be 

expressed as
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where I(k) are the complex spectral components.

The charge is then
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As can be seen, (9) imposes a restriction on the DC component 

of current, I(0) = 0, and introduces the DC component of charge 

Q(0) as another unknown variable. Thus the set of equations of 

the harmonic balance method for the whole circuit will be 

extended by one equation and one unknown for each memristor. 

The condition I(0) = 0 can be seen as a necessary condition for 

the existence of steady state.

The next step consists in the calculation of memresistance 

(3a). With respect to constitutive relation (7), RM will be again a 

polynomial of q
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Let us consider the square of charge
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where Q(k) are the spectral components. After performing (11), 

the number of harmonics is doubled. The operation is equivalent 

to the (full) convolution of vectors of spectral components Q.

Formally, the operator of multiplication in (10) will be replaced

by the operator of convolution. The spectrum of RM will be
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The number of harmonics of RM depends on the degree of 

polynomial (10). Finally, the vector of harmonic components of 

the terminal voltage will be

MRIV 4" . (13)

Since the number of spectral components of the terminal voltage 

should be the same as the number of components of the terminal 

current, vector V should be truncated into the interval –N,..., +N.

The model of a flux-controlled memristor can be derived in 

the same way. In the multi-tone case, where frequencies !k in 

(4) are not integer multiples of the fundamental frequency, the 

procedure for the calculation of frequency-domain response will 

be similar. With respect to the mapping of spectral components 

into a one-dimensional array, (12) and (13) will not be 

expressed in terms of the convolution operator.

2.2. Memcapacitor

The constitutive relation of ideal voltage-controlled 

memcapacitor is

)(!55 " , (14)

where
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is the integral of charge [10].

The memcapacitor charge and current are then
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where 
!
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CM

)(
)( " is the memcapacitance.

The terminal current i can be calculated from the independent 

terminal voltage v (stimulus) as follows

v(t!"#"!(t!"#"CM(!!"#"i(t) =d/dt (v(t) CM(!)). (18)

The spectrum of flux 6 can be calculated similarly to (9), 

which imposes the restriction V(0) = 0, and introduces the DC 

component of flux 6(0) as another unknown variable.

Similarly to (7) and (10), constitutive relation (14) will be 

assumed in the polynomial form with coefficients ck. Then the 

spectrum of memcapacitance will be
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Finally, the vector of harmonic components of the terminal 

current will be

)( MCVI 47" , (20)

where $" %&" '()" *+),-'*," of differentiation in the frequency 

domain, i.e. each spectral component is multiplied by "!k.

The constitutive relation of ideal charge-controlled 

memcapacitor is [10]
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The memcapacitor voltage is then
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where 
5
5!

5
d

d
DM

)(
)( " is the inverse memcapacitance.

The terminal voltage v can be calculated from the 

independent terminal current i (stimulus) as follows

i(t!"#"q(t!"#"5(t!"#"DM(5!"#"v(t) = q(t) DM(5). (23)

The spectra of charge and its integral can be calculated 

similarly to (9). There will be two restrictive conditions, I(0) = 0

and Q(0) = 0, and the DC component of the integral of charge S(0)

will be introduced as another unknown variable.

Similarly to (7) and (10), constitutive relation (21) will be 

assumed in the polynomial form with coefficients dk. Then the 

spectrum of inverse memcapacitance will be
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Finally, the vector of harmonic components of the terminal 

voltage will be

MDQV *" . (25)

2.3. Meminductor

The constitutive relation of ideal current-controlled 

meminductor is

)(q88 " , (26)

where
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t

d&&!8 )( (27)

is the integral of flux [10].

The meminductor flux and voltage are then
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where 
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8
" is the meminductance.

The terminal voltage v can be calculated from the 

independent terminal current i (stimulus) as follows

i(t!"#"q(t!"#"LM(q!"#"v(t) =d/dt (i(t) LM(q)). (30)

Similarly to (19), the spectrum of meminductance will be
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The vector of harmonic components of the terminal current 

will be

)( MLIV 47" . (32)

The constitutive relation of ideal flux-controlled 

meminductor is [10]
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The meminductor current is then
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where 
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)( "9 is the inverse meminductance.

The terminal current i can be calculated from the independent 

terminal voltage v (stimulus) as follows

v(t!"#"!(t!"#"8(t!"#"9M(8!"#"i(t) = !(t) 9M(8). (35)

Similarly to (9), there will be two restrictive conditions,

V(0) = 0 and 6(0) = 0, and the DC component of the integral of 

flux F(0) will be introduced as another unknown variable.

Then the spectrum of inverse meminductance will be

2 3(
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and the vector of harmonic components of the terminal current

will be

M!I *6" . (37)

3. Linear Circuit with Mem-Element

Let us consider a connection of a linear circuit, which may 

include independent sources, with one mem-element, Fig. 1.

For current/charge-controlled mem-elements, the linear part 

can be replaced by the Thévenin equivalent circuit represented 

by (2N+1) spectral components of equivalent voltage V(k) and 

series impedances Z(k). KVL for the loop in Fig. 1a can be 

written as

0)(
)()()()( "%% M
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where )(
)(

M
k

MV I is the k-th spectral component of mem-element 

voltage, which is a function of all spectral components of 

current IM.

For voltage/flux-controlled mem-elements, the Norton 

equivalent circuit in Fig. 1b gives

0)(
)()()()( "%% M

k
M

k
M

kk IVYI V , k = -N,..., N. (39)
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If the memristor is connected to a linear circuit, there is no 

means how to determine the mem-element internal state by a 

linear observer in order to set or stabilize the DC components of 

integrals (see Section II). Thus the necessary condition for the 

existence of the steady state, 0
)0( "MI or 0

)0( "MV , should be 

fulfilled by design. Then the DC components can be arbitrary, 

i.e. the system has an infinite number of steady states.

Fig. 1. Linear circuit with mem-element and its Thévenin (a) 

and Norton (b) equivalent circuit for individual spectral 

components.

With respect to the symmetry of spectral components, (38)

and (39) represent N complex equations for N complex 

unknowns (or equivalently 2N real equations for 2N real 

unknowns) in the implicit form

0)( "MIF or 0)( "MVF . (40)

The solution of (40) represents an approximation of the steady 

state by an a priori chosen number N of harmonics. The initial 

guess may be given by the AC solution for I(1) or V(1).

Let us consider the single-tone circuit in Fig. 2 with current-

controlled meminductor. The meminductor constitutive relation 

(26), (31) is characterized by two polynomial coefficients, 

l1 = 0.1 H and l3 = 103 HC-2. The necessary condition 0
)0( "MI

is fulfilled by design. Parameters were chosen such that the 

resonance occurs at 15.9 Hz, considering only the linear term l1

of (26).

Fig. 2. Example of linear circuit with current-controlled 

meminductor.

The method of harmonic balance was experimentally 

implemented in Matlab. Equation (40) was solved using the 

fsolve function. Figure 3 shows the steady-state amplitude of I(1)

for different values of Q(0). It was calculated for the number of 

harmonics N = 10. It is evident that the resonance frequency 

depends on the DC component of charge.

Figure 4 shows the steady-state waveforms of meminductor 

voltage for Q(0) = 10 mC for frequencies of 2 Hz and 8 Hz.
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Fig. 3. Resonance curves of I(1) for different values of Q(0).
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Fig. 4. Time-domain waveforms of vM(t) for Q(0) = 10mC.

4. Conclusions

The frequency-domain models presented in the paper allow

formulating analytically the relations between the spectral

components of stimulus and response, both for periodic and

quasi-periodic steady-state conditions. It is not necessary to

transform signals between the time and the frequency domains

to obtain the mem-element response.
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