Low-Cost and Low-Power Video Filtering with Parallel Many Cores

Y. Serhan Gener', Abdullah Yildiz', Sezer Goren'

!Dept. of Computer Engineering, Yeditepe University, Istanbul
sgener @cse.yeditepe.edu.tr, ayildiz@cse.yeditepe.edu.tr, sgoren @cse.yeditepe.edu.tr

Abstract

This report examines the advantages of low-cost many-
core architectures over graphical processing units (GPU)
for massively parallel applications. We show that graphi-
cal processing units (GPU) could be costly and power in-
efficient for workloads such as spatial domain video filter-
ing tasks that take advantage of parallel computing. In this
study, we analyze a simple video filtering application on a
low-cost parallel programming platform called ‘Parallella”
which includes a Xilinx Zynq all programmable system-
on-chip (SoC) along with a parallel processing architecture
named “Epiphany” co-processor which includes 16 small
RISC cores. We compare it to other hardware and software
alternatives in terms of cost, power, and performance. We
show that it is possible to use such a low-cost platform for
these kinds of workloads without too much programming
effort.

1. Introduction

Parallel computing is one of the most promising topics nowa-
days both in hardware and software domains. Various types of
workloads could be split into manageable units by executing
same or similar operations at the same time.

To take advantages of parallelism in general-purpose hardware
architectures, single instruction-multiple data (SIMD) concept
has been used for a long time. However, SIMD mechanism
on general-purpose processors (GPP) could require the work-
load to be analyzed during compile-time before running it to
better utilize SIMD instructions. Since general-purpose archi-
tectures are designed to handle mixed-type of workloads, exe-
cuting SIMD type of jobs on these kinds of architectures could
prevent achieving and exploiting the potential parallelism. For
this reason, it is better to use a dedicated hardware to run SIMD
type of jobs.

Today heterogeneous architectures can handle various types of
workloads by using different kinds of processing units. For
example, a heterogeneous computing system can employ a
general-purpose processor that takes care of serial programs or
low-priority tasks, a co-processor that can run programs to of-
fload compute-intensive tasks from general-purpose processor
and also there could be another dedicated processor to handle
real-time and critical tasks. However, there are some challenges
that should be addressed for a heterogeneous computing plat-
form. Due to the non-uniform architecture of this kind of plat-
form, the management and the interaction between dissimilar
processing units has to be handled efficiently.

This work was supported by the Parallella University Program.

921

Reconfigurable architectures or field programmable gate arrays
(FPGA) are well-suited for handling the management and the
interaction between dissimilar cores. That is, the field pro-
grammable nature of an FPGA could provide on-the-fly update
and upgrade to handle the interconnection between different
types of computing units. A good example to this concept is
Parallella [1]], which includes a dual-core ARM A9 processor
along with an FPGA and a 16-core co-processor.

In this report, we analyze this platform and try to take advantage
of this heterogeneous architecture on a simple video filtering
application with respect to competitive GPUs.

2. Background

Image and video processing are one of the areas of interest in
parallel computing and as a platform GPUs are mostly preferred
for their tightly coupled software and hardware frameworks for
these types of workloads. Compared to a general purpose pro-
cessor (GPP) including a few cores optimized for sequential
processing, a GPU has a massively parallel architecture consist-
ing of many smaller cores designed for handling and processing
multiple tasks simultaneously. Many application domains re-
quiring high-performance computing could also take advantage
of such a platform. However, since GPUs are usually power-
hungry devices, using them on power-sensitive embedded plat-
forms could be costly.

Since we’re targeting low-cost and low-power implementation
of image and video processing tasks, it makes sense to analyze
some low-end commercial GPUs. Table [l shows GPU models
supporting ‘Compute Unified Device Architecture (CUDA)’ of
NVIDIA [2] in terms of memory bandwidth, performance, and
power.

Table 1. Technical specs for low-end and low-power GPUs sup-
porting CUDA

Memory Processing Power
GPU Model Bandwidth Power Consumption | GFLOPS/W
(GB/s) (GFLOPS) (Watts)
GeForce 710M 14.4 307.2 12 25.6
GeForce 820M 16 366.3 15 24.42
GeForce GT 420M 25.6 192 10 19.2
GeForce 610M 14.4 142.08 12 11.84
GeForce GT 220M 25.6 120 14 8.57
GeForce GT 320M 25.3 90 14 6.43
GeForce G 102M 6.4 48 14 3.43
GeForce 8400M G 6.4 19.2 10 1.92

As shown in Table [I] low-end GPUs have considerable power
requirements to exploit parallelism in a low-cost system. When
we think of applications that could run on embedded platforms,
power becomes the most important aspect of the system. On the

other hand, on an embedded platform, the overhead of transfer-
ring workloads from memory to GPU could become challeng-
ing as interaction with GPU is usually done over PCI interface.
However, using a reconfigurable interface could make this data
exchange more flexible and power efficient. For this reason,
using FPGAs would be convenient in this sense.

3. Parallella as a Parallel Computing
Platform

Parallella is an energy-efficient many-core platform which in-
cludes 16-core Adapteva Epiphany co-processor and Xilinx
Zyng-Z7010 all programmable SoC. Besides its potential as
a heterogeneous computing platform alone, its small size also
makes it an ideal component for parallel computing applications
running in a cluster configuration. Figure[T|shows the top-view
of Parallella.

Epiphany E16G301 16-core Xilinx Zyng-Z7010
Co-processor all programmable SoC

1GB SDRAM

Figure 1. Parallella platform

The Epiphany co-processor on Parallella platform consists of
a scalable array of 16 small RISC processors that are pro-
grammable in bare metal C/C++ or in a parallel programming
framework like OpenCL, MPI, and OpenMP. These mesh of in-
dependent cores are connected together with a fast on-chip net-
work within a distributed shared memory architecture. Figure[2]
shows the block diagram of the Epiphany 16-core co-processor.

elink 10

1 GHz
RISC CPU

32KB+ Distributed
Local Memory

o1una

elink 10

Figure 2. Epiphany E16G301 16-core block diagram

The Epiphany co-processor is connected to the Zynq SOC via
the eLink interface. An Epiphany eLink protocol stack is imple-
mented in the reconfigurable logic portion of the Zynq SOC. In
addition to the eLink interface, the programmable logic portion
also includes an AXI master interface, an AXI slave interface,
and an optional HDMI controller interface within the reference
design by default.

Xilinx Zyng-Z7010 all programmable SoC is the host device
on Parallella and runs a Linux operating system. It includes a

922

dual-core ARM A9 CPU along with programmable logic that is
equivalent to 430K ASIC (Application Specific Integrated Cir-
cuit) gates in size. The existence of such a programmable logic
makes the interface between the co-processor and the host CPU
flexible and reconfigurable. Figure [3] shows the high level ar-
chitecture of Parallella.

In terms of power consumption, the Epiphany co-processor has
some advantages against low-end GPUs. It has less than 2W
power consumption while achieving 32 GFLOPs peak perfor-
mance. This corresponds to 16 GFLOPS/W such that this per-
formance/power ratio is comparable to CUDA supported low-
end GPUs with respect to Table[T] The off-chip memory band-
width of the Epiphany co-processor is 8 GB/s.

Zyng All Programmable SoC

Processing System

{ Host processor

(AXI bus]

Programmable Logic
.

Epiphany Co-processor H

[Memary Controller

PE: Processing Element

Figure 3. Parallella high level architecture

4. Spatial Domain Image and Video
Filtering on Parallella

We implemented a simple video processing application on Par-
allella platform in order to show that it has comparable perfor-
mance/power ratio with respect to low-end GPUs. An input
video feed was obtained from Kinect Xbox 360 device which
has 640x480 pixels color resolution although any camera would
do the job. The reason that we selected Kinect rather than a reg-
ular camera is also to use it to process depth information in a
future work.

In this implementation, each core on the Epiphany co-processor
processes a segment of the current video frame by applying a
median filter and then an edge detection function using Lapla-
cian kernel. Each core uses its own local memory to read the
data and write the result as well as for the synchronization with
the host. Figure [4] shows the sequence diagram of our imple-
mentation.

To implement the software running on the host, we used
libfreenect library to take the RGB video feed of Kinect over
USB interface into the host part of Parallella platform and then
we transformed it into grayscale color space. After that, the
transformed video feed was transferred into the local memories
of the Epiphany co-processor’s cores in order to perform the fil-
tering operation. To accommodate the interaction between the
host and the Epiphany co-processor, we used Epiphany Hard-
ware Abstraction Layer (eHAL) library and to manage and con-

OpencCV
Host Epiphan . Kinect
‘ piphany Window
T T T T
iRt | ! il
Initialize Window L L
Initialize Epiphany | Send Frame
READY signal
RGB to
Grayscale Send Frame Segments
GO signal
Median
Filter C
Laplacian |
Filter
COMPLETE signal
Send Processed
Frame Segments
Send Processed Frame
{ATE si Display
TERMINATE 1 Py
s Fame
Close Window T
Close Kinect H T

Figure 4. Sequence diagram of video filtering application we
implemented

figure the Epiphany co-processor, we used Epiphany Hardware
Utility Library (eLib).

4.1. Implementation of the host side

The ARM processing system on the Zynq SoC (i.e., the host) is
responsible for the initialization of the Epiphany co-processor
and Kinect. After initializing them, the host waits for every
core on the Epiphany co-processor to return a READY signal
which indicates that they are ready to receive data and pro-
cess it. When the READY signal is sent from each core, an
RGB video frame is received from Kinect and then converted to
grayscale colorspace on the host. This grayscale video frame is
then partitioned to be shared among the cores of the Epiphany
co-processor and written to each core’s local memory. After that
a GO signal is set on each core’s local memory to start them to
process data. That is, the GO signal indicates that a new video
frame has been uploaded to the core’s local memory and waits
for being processed. Then the host receives the next RGB video
frame from Kinect, converts it to grayscale colorspace as each
core processes their corresponding segment of the video frame
and waits for a COMPLETE signal from each core to acknowl-
edge that the corresponding core completed its processing and
is ready to receive the part of the next video frame. After all
the cores complete their processing, the processed frame seg-
ment is read from each core’s local memory and combined on
the host to reconstruct the processed video frame. The recon-
structed frame is displayed via the host and the flow starts again
by writing the next frame to cores’ local memories. Pseudo
code relating to the implementation of the host side is shown in

Listing [T}
4.2. Implementation of the Epiphany Co-processor side

From the perspective of the Epiphany co-processor, each core
on it starts their execution after the host loads the program code
into their local memory. The Epiphany co-processor we used
consists of sixteen cores and each core runs the same program.
The pseudo code of the program is shown in Listing |Zl When
the Epiphany system is loaded, cores first read their 12-bit core
IDs from the core registers. With the core ID, each core cal-

Listing 1: Pseudocode of the host part

INITIALIZEKINECT()

E_INIT(NULL)

E_RESET_SYSTEM()

E_GET-PLATFORM_INFO(&e.platform)

msg.signal_terminate=0

msg.signal_go=0

msg.core_ready=0

msg.core_complete=0

for row := 0 to e.plat form.rows do

for col := 0 to e.plat form.cols do

E_WRITE(&e.epiphany, row, col,
MESSAGE_ADDRESS, (void *)(&msg),
sizeof(msg))

end
end
WAITCOREREADY()
INITIALIZEWINDOW()
RGBTOGRAY(GETFRAME())
while true do
WRITEFRAMETOCORES()
SIGNALGO() > send Go signal to every core
RGBTOGRAY(GETFRAME())
WAITCORECOMPLETE() b wait every core to complete
computation
READFRAMEFROMCORES() © read frame segments from
every core
SHOWIMAGE()
¢ = WAITKEY(33)
if c == 27 then
SIGNALTERMINATE()
every core
break

> ESC Pressed

> send Terminate signal to

end

end
RELEASESOURCES()

culates the row and column coordinates in its own workgrou[ﬂ
and also calculates their respective core number. Before cores
became ready for the processing, each core calculates the num-
ber of rows they are going to receive from the video frame and
then sets the READY signal in their local memory so that the
host can acknowledge that they have completed their initializa-
tion and been loaded successfully. Then every core waits for the
GO signal to be set by the host to indicate that the host has just
written a new frame section to their local memory. After a core
finishes its processing, it sets the COMPLETE signal on its local
memory for the host to read, so that the host can acknowledge
the completion of the processing at the corresponding core. Af-
ter setting the COMPLETE signal, each core also resets the GO
signal which was set by the host so that they start waiting for
taking the segment of the next video frame from the host to pro-
cess.

4.3. Segmentation of the video frame

After converting the video frameﬂ from RGB to grayscale color
space, the host starts to write frame segments to each Epiphany

'A workgroup is a collection of adjacent cores on Epiphany co-
processor(s).
2The resolution of the video frame is 640x480 pixels.

Listing 2: Pseudocode of the Epiphany co-processor part

coreid = E_.GET_COREID()
ECOORDS_FROM_COREID(coreid, row, col)
cnum = row * e_group_con fig.group_cols + col
core_ready = 1
while signal_terminate /= 1 do

while signal_go != 1 do

end
MEDIANFILTER (cnum)
EDGEDETECTIONFILTER()
core_complete = 1
signal_go=0

end

co-processor core. The size of a frame segment is shown in
Figure[5] Segments are sent to the Epiphany co-processor cores
with overlapping pixel regions to perform the filtering easily.
Every core receives segments with a resolution of 32x640 pixels
where the first row of a segment overlaps with the last row of
the previous segment and the last row of a segment overlaps
with the first row of the next segment, except the first and the
last cores. The first and the last cores receive segments with a
resolution of 31x640 pixels. Overlapped segmentation is shown

in Figure[g]

640

30 1 Frame Segment

Figure 5. Frame segment that is processed by each core on the
Epiphany co-processor

640 Pixels

2 pixels
overlapping

n!“Iml

480
Pixels

= [= =
"!#!N!o!.!

Figure 6. Overlapping segmentation of a video frame

5. Test & Results

We implemented the same filtering algorithms without using
any library implementations of them both on Parallella and GPU
platforms. To compare with Parallella, we used NVIDIA GT

924

520 GPU which has 155.5 GFLOPS peak performance and con-
sumes 29 Watts of power.

For a fair comparison, we utilized the same amount of cores on
both platforms. We measured latencies of each particular op-
eration on both platforms and then calculated frame per second
(FPS) rate to show that how good they exploit parallelism. The
results of this comparison are shown in Table 2}

Table 2. Comparison of the Epiphany co-processor with a low-
end GPU®

Number | Frame Latency - —
Accelerator Used of Cores Rate Data Transfer Median Filiering
Utilized | (FPS) between Host and & i
Accelerator Edge Detection
Epiphany E16G301 16/16 4.12 38ms 131ms
NVIDIA GT 5207 16/48 297 1ms 323ms

‘We observed that the latency caused by the data transfer on Par-
allella platform is between 30ms and 50ms. The actual data
processing needed 131ms on average.

As a result, we can say that the Epiphany co-processor is an
ideal low-power hardware accelerator with respect to an equiv-
alent GPU platform.

6. Conclusion

In conclusion, it was shown that Parallella platform can be
used to accelerate applications which inherently supports par-
allelism.

As a feature work, our implementation can be improved by
changing the memory transfer structure between DRAM and
the Epiphany co-processor. In this way, it is possible to use
more than one matrix or a larger matrix for processing data on
the Epiphany co-processor. For example, one additional ma-
trix can be the depth information which can be acquired from
Kinect or larger matrix frames received from a camera can be
used directly to obtain a more visual representation.

As an another example, depth information can be used to get
the position of the nearest object in a video frame. Later on,
this information can be used to remove the background and the
objects which are located at further back. For example, it can be
used to extract information from a camera at an ATM. Hence,
with the provided implementation it can be possible to eliminate
people at the back that are only passing through and only focus
on the person that is in front of the ATM.

Other than image processing applications, Parallella platform
can also be used for artificial intelligence (Al) applications. In
general, Al applications require a lot of computational power
when building tree structures and searching in them with a mas-
sively parallel way. Since Parallella is physically small and
power efficient, it could be an ideal computing platform in a
robotic device which runs Al algorithms.

3The results are rough estimates.
4GPU operates on a PC which has Intel Core2 Duo CPU E7300
2.66GHz along with a 4GB DRAM.

7. References

[1] Supercomputing for Everyone
http://wuw.parallella.org/

[2] NVIDIA
http://www.nvidia.com/

8. Appendices

A.

Listing 3: Pseudocode of the median filter function

for row := 1 to 30 do
for col := 0 to 639 do
for wrow := —1to1do
for wcol := —1to 1 do
window[wrow+1][wcol+1] =
frame[row+(wrow+1)][col+(wcol+1)]
end
end

sort(window)

if row == 0 then
| tmp[col] = window([4]
end
else
frame[row-2][col] = tmp][col]
tmp[col] = window[4]
end

end

end

for col := 0 to 639 do
| frame[29][col] = tmp][col]
end

925

B.

Listing 4: Pseudocode of the edge detection function

window[9] = {-1,-1,-1,-1,8,-1,-1,-1,-1}

for row := 0 to 29 do
for col := 0 to 639 do
for wrow := —1t01do
for wcol := —1to1do
value = window[wrow+1][wcol+1] *
frame[row+wrow][col+wcol]
end
end
end

end

if row == 0 then

| tmp[col] = (value/6 < 0?0:255)
end
else if col == 0 then

temp = tmp|[col]

‘ tmp[col] = (value /6 < 0? 0: 255)
end
else if col == 639 then
frame[row-1][col-1] = temp
frame[row][col] = tmp[col]
tmp|[col] = (value /6 < 0? 0: 255)

end
else

frame[row-1][col-1] = temp

temp = tmp|[col]

tmp[col] = (value /9 < 0?0 : 255)
end

for col := 010639 do
| frame[29][col] = tmp][col]
end

