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Abstract

In this paper, a firzzy flip-flop concept is
introduc€d according to the fuzzy logic operations.
Characteristic equations ofthe flip-flops have been
derived by extending binary logic flip-flop concept
and making some orientations d€p€nding on the
finzy logSc nrles. JK flipflop is a common type of
flip-flops and other types may be produced by
modiffing the equations of the JK flip-flop. Under
these concepts, the characteristic equations of all
types of flip-flops have been derived by applyrng
the sarne method used for the JK flipflop.
Computer simulations of each type are made using
ideal OP-AMPs.

l. Introduction

A flip-flop is a circuit tbat uses logic gates and
feedback to produce a bistable device that can
memorize singfe bits of information. It is the basic
building block for registers and memory. In binary
logic, the most common type of electronic memory
device is the "flipflop". There are four oornmon
types of flip-flops so called JK RS, D and T type
flip-flops. An array of & flipflops can serve to
register or remember a & bit binary word.

Similar conc€pt is valid for finzy flipflop $.
A fuzzy flip-flop can be viewed as an extension of
the binary flip-flop using fuzzy gates instead of
binary gates. After the representation of fuzzy logic
concept, a geat deal of research has been directed
towards realization of fuuy computers. Because, a
flzzy computer operation is simi.lar to the human
thinking. A few types of fiizzy processors
[2,3,4,5,61 which perform fuzzy operations can be
realized and tested. However, in order to realize
multi-stage fuzzy inference, (i.e. fvzy computer,)
fuzzy memory modules are indispensable. For an
ordinary computer, a binary flip-flop is used as a
fundamental element of memory modules. [n the
case ofa firzry computer,fitzzy flip-flops are used
to construct the memory modules of the device
[7,8].

2. The ConceptofFfuzy Logic

Fvzy loglc is based on concept of fizzy sets.
Therefore, the value of any variable must be in the

range [0, l]. So, the tnrth value of a formula can
assume any value in the interval t0, U. Basic
properties offiizzy logic operations are given by the
following expressions [9, l0]:

( l )  T(S)=T(A) i f  S=A.
(2 t  r (S )= l - r (A )  i f  S=A .
(3) T(S) = maxlT(Sr), T(Sr)l if 51 = 51+ 52.
(4) T(S) = minfl(Sr), T(Srl if Sr = Sr Sz.

where T(S) denotes the futh value of a formula S.
Another point here to remember is that two-

valued logic is a special case of fuzzy logic; all the
rules shown above are applicable for two-valued"
binary logic.

3. f'nzzy Algebra

lntvzzy algebra the concepts of f:lzzy sets are
used. Fuzzy variables are the main elements of
finzy algebra So, "finzy variable" is replaced by
the term "membership grade" of a fuzzy variable in
a ser u ll.

In Boolean dgebrA the specific conditions
which are A/14 = 0 and A''-,,A = I always hold
true; however, in fitz4 logic, none of these nrles
always holds true, since in. tuzq logic, the
corresponding operations will be A^A = minlA
(l-A )l and AwA = rnaxlA (l-A)1.

4. Fnzzy Logic Gates

As in binary logic, the basic circuits for fuzzy
logic are the standard AND, OR and INVERTER
gates. More complex devices can be consEucted by
different compositions of these gates. Using the
three basic gates, any sophisticated circuit can be
achieved. Assuming ideal op-amps, the hardware
implementations of firzzy AND, fi&zy OPe and
fuzzy INVERTER gates are proposed in Figures l,
2 .and3.

V-r: I - Vin
Figurt 1. flzzy logic Inverts Circuit
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Figre 2. Fuzy lngic OR Ciroit

5. Fuzzy Flip-Flops

A flip-flop is the most common type of
electronic memory device. It is the basic building
block for registers where binary information is
stored. The so-called JK flip-flop is a common type
in binary logic implementations; other flip-flop
types may be produced by modi$ing a JK flip-flop.

A similar concept can be applied for fuzzy logic
U2l. A fuzzy flip-flop can viewed as an extension
of the binary flip-flop with fuzzy gates.

Four types of frlzzy flip-flops are discussed in
this paper deriving equations for JK, RS, D and T
type flip-flops. The JK flip-flop is the basic type of
them and the equations for other types can be
derived similarly from the equation of the JK flip-
flop.

5.1. JK Flip-Flop

Table l. Truth Table for binary logic JK FlipFlop.

From minterm expression for the fruth table shown
above in Table l, the state equation is given as
follows:

Q(t+l) = JQ + KQ 15 U
Maxterm Expression for the next state is sirnilarly
shown below:

Q ( + t ) = ( J + Q ) ( K + Q ) 15.21
As shown above, the binary JK flip-flop can be

implemented either as the sum of products; or as
the product of sums. Both of these equations in
binary logrc gives the same result. This can be

V-, = min[V* Vs].
Figure 3. Frzzy ln$c AND Circuit

proved by using De Morgan's Law in the following
nunner:
(AnB)u,(AnC)w@nC)=(AnB)v(AnC) t5.31

(AwB)n(A,uC)n@ruC)=(AuB)n(AuC) t5.41

But these two equations ([5.1] and [5.2]) can be
fvzified in two different manners. The first one is
called as reset type while the second type is called
as the.ret type firzzy JK FlipFlop. The reset ffi
€quation implies the maximum of minimum terms
and the set tlpe equation implies the minimum of
maximum terms.
Equation [5. l] can be fuzzified as

Q(t+ l )= {JA( l -O} v  { ( r -K)  AQ} t5.51
Similarly, equation [5.2] can also be fuzzified as

Qs(t+l) = trvQ) A {(l-K) v (l{)} [5.61

It is the fact tlnt QC+l) = Qs(t+l) does nor
always hold true according to fivry logic
operations. Some cases can be investigated to give
the difference between Q(t+l) and Qs(t+l):

Case l) If J<Q<0.5<K
Qn(t+l) = {J A (l- Q)} V {(l-K) A Q}
QRC+I)= J v{( l 'K)AQ}
Qn(t+ l )= {J  V( l -K)}  A {J  vQ}
Q(t+ l )= {J  v( l -K)}  AQ

Qs(t+l) = {JVQ} A {(l-K) v (l-Q)}
Qs(t+ l )=QA {( l -Q)}
Q,(t+l) = Q

Here, max(J,{ l-K}) may be greater than Q or less
than Q. If it is less than Q, Q(t+t;=t**,J,{l-K})
which is less than Q. If it is greater than Q,
Q(t+l)=Q, Q(I+1FQ. Th€n QR(r+l) < Q5(t+l) is
valid.

Case 2) If J<0.5<Q<K
QR(t+l) = {J A (r- Q)} V {(l-K) A Q}
QR(t+l) = {J A (1- Q)} v {(1-K)}
Q.(t+l) = u v (l-K)) A {(l-K) v (l-Q)}

Q(t+l) = {JVQ} ̂  {(l-K) v (l-Q}

424

JC) K(r) ac) Q(r+l)

0 0 0 0
0 0 I I
0 0 0
0 I 0
I 0 0 I

0 I I
I 0
I I 0
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Qs(t f l )=QAt( l -Q) l
Qs( t+ l )=( lQ)

Similarly, J V (l-K) may be less than {lQ}, so
QC+t)sQ(t+l) isvalid-

ln the most of the cases the equality
Q(t+t)= Q(t+l) can be caughq but the two cases
written above prove that Q(t+l) is not alnays
equal to Q(t+l). Therefore, it should be given that
Q(t+l)sQs(t+l).

However, the values of Q(t+l)s of both type are
equal to each other at the bounds of J's and K's.
That is when J=K is valid, Q(t+l) is always equal
to Qs(t+l) as shov,,n below:

Case j) If J=K<Q
QR(t+l) = {J A (l- Q)} v {(l-K) A Q}
QR(t+l) = {J A (l- Q)} v t(l-r) A Q}
Here Q>J)J A(lQ), so (r-.|')AQ> JA (lQ)

Qs(t+r) = {rvQ} A {(l-K) v (lQ}
Qs(t+l) = Q A {(l-D v (l-Q}
Qs(t+r) : {Q A(r-D} v {Q A (1-Q)}
Similarly Q A (l-DZ Q A (l-Q),
TherL

Q(t+lF Qs(t+l)

Case 4) If J=K=Q
QR(t+r) : {I A (l- Q)} v t(l-K) A Q}
QR(r+l) = {I A (l- D} V {(r-.D A J}
Q(t+ l )  = JA (1-  D

Qs(t+l) = {JVQ) A {(l-K) v (lQ)}
Qs(t+l) = J A {(l-D V (l-J)}
Qs ( t+ l )=JA( l - J )

It is obvious tlt:at q*6+t;= Qs(t+l).

Case 5) If J=K>Q
Q(t+l) = {r A (1-Q)} v {(l-K) A Q}
QRC+I) = tJ A (l- Q)) v {(l-r) A Q}
Since J>Qz(l-I) AQ,
Qr ( t+ l )=JA( l -Q)

Q(t+l) = {rvQ} ̂  {(r-K) v(rQ)}
Qs(r+l) = J A t(l-D v (l-Q)
Qs(t+r): {J A (l-D} v {J A (l-Q)}
Similarly J A (lQ)Z J A (l-D,
TherL

Q(t+lF Qs(t+l).

As a conclusion, if the condition J=K is vali4
QR(t+I) is always equal to Q(t+l).

It is proved tlrat q{(t+l) S Qs(t+l) holds always
tnre. Therefore, a single equation for characteristics
of both reset and set tlpe flip-flops can be derived
as follows:

Q(1+l)={J v (l-K)} A (J v Q) A {(l-K) v (l-Q)}

ts.7l

The last equation shown above is the fundamelrtal
equation of a JK flip-flop which has characteristics
of both sel and reset-types.

The realization of a JK flip-flop using the firzzy
AND, OR, and NOT gates is given in Figrue 4.

Rgure 4. Implementation of Fluzzy JK Flip-Flop

5.2. RS Flip-Flop

Table 2. Truth table for RS Flip-Flop

The mintemr expression for the next state output
of the truth table shown in Table 2 is given below:

Q(t+ l )= S+RQ [5.8]

Similarly maxterm expression for Q(t+l) is
shown below:

Q( t+ l )= (s+aXn+q l  t 5e l
The fuzzified equadons are derived as

Q(t+r )={s }v { ( l -R)^Q} t5. r0l

Qs(t+l) = {s vQ} A {(l-R) v(l{)} [5.11]
In a similar manner, Q(t+l) is not always equal

to Qs(t+l). For example:

Case 1) ES:R<Q
Q( t+ l )=SVt ( l -R )AQ)
Q(t+l) = {s v (l-s)} A ts v Q}
Q ( t + l ) = { s v ( 1 - s ) } A Q

Q(r+l) = {svQ} n {(l-R) v (l-Q)}
Qs(t+l) = Q A t(l-s) V (l{)}
If S=R<Q<0.5, Then, Q(t+lFQ Qs(t+tFQ.
If 0.5<ScQ,Theq Q(t+lFS Q(t+l)=l-S. So,

R(t) s(t) ac) Q(1+l)

0 0 0 0
0 0 I I
0 I 0 I
0 I I I
I 0 0 0
I 0 I 0
I I 0 o

I I I ,|

QR(t+lH Qs(t+l)
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Q(r+l) = DQ+ DQCase 2) If S=R=Q
Q( t+ l )=sv t ( l -R )AQ)
Q ( t + l ) = s v { ( 1 - s ) A S }
Q(t+t ;= 5

Qs(t+l) = {svQ} A {(l-R) v(1Q)}
Qs(t+r)=sA( l -s)
If s>0.5, Then, Q5(t+l)=(1-S), Q(r+rFS.

QR(t+l)+ Qs(r+l)

Case 3) If S=R>Q
Q( r+ l ) : sv { ( l -R )AQ}
Q ( t + l ) = s v { ( l - s ) A Q }
QR(t+l) = {S V(l-s)} A ts V Q}
QR(t+ l )=tsv( l -s) )ns
Q 1 ( t + 1 ) = S V { S A ( l - S ) }
QkC+l) = S

Qs(t+l) = {SvQ} A {(l-R) v (l{)}
Qs(t+t) = S A {(t-S) v (l-Q)}
If S<0.5, Then, Qs(t+l)= S A (IQFS.
If S<0.5 and Q<0.5, Then, Qs(t+lFl{ and
QR(t+l): s. so,

QR(t+lHQs(t+r)

A general case can be found to determine the
characteristic equation of RS flipflop given in the
following equation;

Q(t+l) ={s v (l-R)}  ̂  (s v Q) ̂  {(r-R) v (lQ)}
[5.12]

The hardware implementation of this frrzzy RS
flip-flop using the fuzzy AND, OR and NOT gates
is shown in Figure 5.

l'igure 5. lmplementation of Fuzzy RS Flip-Flop

5.2. D Flip-Flop

Table 3. Truth Table for D Flip-Flop

Minterm expression for this flip-flop is given below
from Table 3.

[5.  l3 ]

A similar rna;<term expression is shown as follows:

Q( t+ t )= (D+Q) (D+Q) [5. l4l

The characteristic equation of D flip-flop is found
by fint extending the maxterm expression using De
Morgan's Theorer4 then this equation is fuzztfied
as

Q( t+ l )=  tD  vQ)  A  {D  V (1Q) }AD [5 .15 ]

The realization of D flip-flop using the fuzzy AND,
O& and NOT gat€s is given in Figure 6.

Figure 6. Iruplementation of Fuzzy D FlipFlop

5.3. T Flip-Flop

Table 4. Truth Table for T Flip-Flop

T(t) a(0 e(1+l)

0 0 0
0 I I
I 0 I

I I 0

Minterm expression is given below:

Q(t+l) = rQ + iq t5.l6l
lvlaxterm expression is shown as follows:

Q( t+ l )= ( r+Q l<T*q l [5 .17]

And the characterislic equation of T flipflop is
given by the following expression:

QC+lFtT v QIA{(l-T) v (l-Q)}At(l-D n r}
[5. l8]

The hardware implementation of this T flipflop
using Oe fuzzy AND, OR, and NOT gates is given
in Figure 7.

Figure 7. Implementation ofFuzzy TFlipFlop

426

D(t) a(t) Q(t+l)

0 0 0
0 0
I 0

I I
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6. Conclusion

A fuzzy flip-flop concept has been proposed in
this paper. Flip-flop is the basic memory derrice, so,
fizzy flip-flops may play an important role for
implementation of fitzzy computers. Sincr a flip-
flop can memorize a single bit of information, the
memory modules of the ftzzy computer may
include various tlpes of flip-flops. In this study, the
characteristic equations of fuzzy flip-flops are
determined according to the nrles of firzzy logic.
The whole study contains all possible cases of the
flip-flop equations in theory and it compares the
properties of crisp logic and fuzzy logic. It also
gives an alternative apprcach for hardware
implementations of fruzy AND, OR and
INVERTER gates. The hardware implemmtations
of these flip-flops can be made using FET types of
operational amplifi ers.
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