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Abstract

In this paper, a fuzzy flip-flop concept is
introduced according to the fuzzy logic operations.
Characteristic equations of the flip-flops have been
derived by extending binary logic flip-flop concept
and making some orientations depending on the
fuzzy logic rules. JK flip-flop is a common type of
flip-flops and other types may be produced by
modifying the equations of the JK flip-flop. Under
these concepts, the characteristic equations of all
types of flip-flops have been derived by applying
the same method used for the JK flip-flop.
Computer simulations of each type are made using
ideal OP-AMPs.

1. Introduction

A flip-flop is a circuit that uses logic gates and
feedback to produce a bistable device that can
memorize single bits of information. It is the basic
building block for registers and memory. In binary
logic, the most common type of electronic memory
device is the “flip-flop”. There are four common
types of flip-flops so called JK, RS, D and T type
flip-flops. An array of k flip-flops can serve to
register or remember a k bit binary word.

Similar concept is valid for fuzzy flip-flop [1].
A fuzzy flip-flop can be viewed as an extension of
the binary flip-flop using fuzzy gates instead of
binary gates. After the representation of fuzzy logic
concept, a great deal of research has been directed
towards realization of fuzzy computers. Because, a
fuzzy computer operation is similar to the human
thinking. A few types of fuzzy processors
[2,3.4,5,6] which perform fuzzy operations can be
realized and tested. However, in order to realize
multi-stage fuzzy inference, (i.e. fuzzy computer,)
fuzzy memory modules are indispensable. For an
ordinary computer, a binary flip-flop is used as a
fundamental element of memory modules. In the
case of a fuzzy computer, fuzzy flip-flops are used
to construct the memory modules of the device
[7,8].

2. The Concept of Fuzzy Logic

Fuzzy logic is based on concept of fuzzy sets.
Therefore, the value of any variable must be in the

range [0, 1]. So, the truth value of a formula can
assume any value in the interval [0, 1]. Basic
properties of fuzzy logic operations are given by the
following expressions [9, 10]:

(1) T()=T(A) if S= A,

2) T(S)=1-T(QA) if S=A.

3 T(S) = max[T(S,), T(S;)] if S, =8;+8,.

@) T(S)=min[T(8,), T(Sy)] if S, =§, S,.
where T(S) denotes the truth value of a formula S.

Another point here to remember is that two-
valued logic is a special case of fuzzy logic; all the
rules shown above are applicable for two-valued,
binary logic.

3. Fuzzy Algebra

In fuzzy algebra, the concepts of fuzzy sets are
used. Fuzzy variables are the main elements of
fuzzy algebra. So, “fuzzy variable” is replaced by
the term “membership grade” of a fuzzy variable in
aset[11}.

In Boolean algebra, the specific conditions
which are AnA = 0 and AUA = 1 always hold
true; however, in fuzzy logic, none of these rules
always holds true, since in fuzzy logic, the
corresponding operations will be AnA = min[A,
(1-A)] and  AUA = max[A, (1-A)].

4. Fuzzy Logic Gates

As in binary logic, the basic circuits for fuzzy
logic are the standard AND, OR, and INVERTER
gates. More complex devices can be constructed by
different compositions of these gates. Using the
three basic gates, any sophisticated circuit can be
achieved. Assuming ideal op-amps, the hardware
implementations of fuzzy AND, fuzzy OR, and
fuzzy INVERTER gates are proposed in Figures 1,
2,and 3.
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Figure 1. Fuzzy Logic Inverter Circuit
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Vou = max[V,, Vg)].
Figure 2. Fuzzy Logic OR Circuit

5. Fuzzy Flip-Flops .

A flipflop is the most common type of
electronic memory device. It is the basic building
block for registers where binary information is
stored. The so-called JK flip-flop isa common type
in binary logic implementations; other flip-flop
types may be produced by modifying a JK flip-flop.

A similar concept can be applied for fuzzy logic
[12]. A fuzzy flip-flop can viewed as an extension
of the binary flip-flop with fuzzy gates.

Four types of fuzzy flip-flops are discussed in
this paper deriving equations for JK, RS, D and T
type flip-flops. The JK flip-flop is the basic type of
them and the equations for other types can be
derived similarly from the equation of the JK flip-
flop.

5.1. JK Flip-Flop

Table 1. Truth Table for binary logic JK Flip-Flop.

I® K® | Q® | Qtl)
0 0 0 0

e Ll e el =1 (=1 =)
e | OO |t | ©

O = | O =D | =
O |t | et | et [ D[ |

From minterm expression for the truth table shown
above in Table 1, the state equation is given as
follows:

Q@t+1) = JQ + KQ [5.1]
Maxterm Expression for the next state is similarly
shown below:

Qe+ =(3+Q) (K+Q) (5.2}

As shown above, the binary JK flip-flop can be
implemented either as the sum of products; or as
the product of sums. Both of these equations in
binary logic gives the same result. This can be
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Vou = min[V,\, Vs].
Figure 3. Fuzzy Logic AND Circuit

proved by using De Morgan’s Law in the following
manner:
(ANB)U(ANC)uBNC)=(ANBYH(ANC)  [5.3]

(AUB)NAUC)NBUC)=(AUB)NALC)  [5.4]

But these two equations ([5.1} and {5.2]) can be
fuzzified in two different manners. The first one is
called as reset type while the second type is called
as the set type fuzzy JK Flip-Flop. The reset type
equation implies the maximum of minimum terms
and the set type equation implies the minimum of
maximum terms,

Equation [5.1] can be fuzzified as

QR+ ={JA1-Q} V{(I-K)AQ} [55]
Similarly, equation [5.2] can also be fuzzified as

Qs(t+1) = {JVQ} A {(1-K) V (1-Q)} [5.6]

It is the fact that Qg(t+1) = Qs(t+1) does not
always hold true according to fuzzy logic
operations. Some cases can be investigated to give
the difference between Qg(t+1) and Qg(t+1):

Case 1) If ]<Q<0.5<K
Qr(t+1)={JA(1-Q)} V{(1K) A Q}
Qr(ttl)=J V{(1-K) AQ}
Qr(tt1)={J V(1-K)} A{JVQ}
Qe(tt)={J V(I-K)} AQ

Qs(t+1) = {JIVQ} A {(1K) V (1-Q)}
Qs+t =Q A {(1-Q)}
Qs(t+1)=Q

Here, max(J,{1-K}) may be greater than Q or less
than Q. If it is less than Q, Qgr(t+1)=max(J, {1-K})
which is less than Q. If it is greater than Q,
Qr(t+1)=Q, Qs(t+1)=Q. Then Qp(t+1) < Qs(t+1) is

valid.

Case 2) If J<0.5<Q<K
Qe(t+) ={J A (1-Q} V{(1K) A Q}
Qr(t+1)={J A (1- Q} V{(1-K)}
Qr(t+) ={J V(I-K)} A {(1-K) V (1-Q)}

Qs(t+1) = {JVQ} A {(1K) V (1-Q)}
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Qs(t+1) = Q A {(1-Q)}

Qs(t+1) = (1-Q)
Similarly, J V (1-K) may be less than {1-Q}, so
Qr(t+1)< Qs(t+1) is valid.

In the most of the cases the equality
Qr(tt1)= Qs(t+1) can be caught; but the two cases
written above prove that Qg(t+l) is not always
equal to Qs(t+1). Therefore, it should be given that
Qr(t+1)< Qs(t+1).

However, the values of Q(t+1)s of both type are
equal to each other at the bounds of J's and K’s.
That is when J=K is valid, Qg(t+1) is always equal
to Qs(t+1) as shown below:

Case 3) If J=K<Q
QR+D={JA1-Q} V{(1-K)AQ}
QRED={JAA-Q} V{(1-DAQ}

Here Q>J>] A(1-Q), so (1-DAQ> T A (1-Q)

Qs(t+1) ={IVQ} A {(1-K) V (1-Q)}
Qs(tt1) =Q A {(1-D V (1-Q)}
Qst+)={Q A (1-N} V{QA (1-Q}
Similarly Q A (1-)2 Q A (1-Q),

Then,
Qr(t+1)= Qs(t+1)

Case 4) f J=K=Q
QuttD) ={J A (1-Q)} V{(1K) AQ}
Qr(t+tD) = {JA (1- D} V{(A-D AT}
Qr(tt) =T A (1-1)

Qs(t+1) = {JVQ} A {(1-K) V (1-Q)}
Qst+) =T A {(1-D V (1-}
Qs+ =JA(1-1)

It is obvious that Qg(t+1)= Qg(t+1).

Case 5) If =K>Q
QG+t ={JA(1-Q)} V{(I-K)AQ}
Qr(tt)={JA(1-Q)} V{(1-) AQ}
Since J>Q>(1-) AQ,
Qr(t+)=TA(1-Q)

Qs(t+1) = {JVQ} A {(1-K) V (1-Q)}

Qs+ =J A {(-)) V(1-Q}

Qs(t+1) = {JA(1-N} VI A(1-Q)}

Similarly J A (1-Q)= T A (1-D),

Then,

Qr(1+1)= Qs(t+1).

As a conclusion, if the condition J=K is valid,

Qgr(t+1) is always equal to Qs(t+1).

It is proved that Qg(t+1) < Qs(t+1) holds always
true. Therefore, a single equation for characteristics
of both reset and set type flip-flops can be derived
as follows:

Q+D={IVUK} AT VQA{1K)VI-Q}

[5.7)

The last equation shown above is the fundamental
equation of a JK flip-flop which has characteristics
of both set and reset-types.

The realization of a JK flip-flop using the fuzzy
AND, OR, and NOT gates is given in Figure 4.

(1}

Figure 4. Implementation of Fuzzy JK Flip-Flop
5.2. RS Flip-Flop

Table 2. Truth table for RS Flip-Flop

R(t) 5(t) QY | Q@+
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 i
1 1 1 ?

The minterm expression for the next state output
of the truth table shown in Table 2 is given below:

Qt+1)= S+RQ [5.8]

Similarly maxterm expression for Q(t+1) is
shown below:

Q) =(SHQXR+Q)  [59]
The fuzzified equations are derived as
Qr(t+1)={S} V{(1-R) AQ} [5.10]

Q) ={SVQ} A{(I-) V(1-Q)} [5.11]

In a similar manner, Qg(t+1) is not always equal
to Qs(t+1). For example:

Case 1) If S=R<Q
Qe(t+1)=S V{(1-R) AQ}
Qrt+1) = {SV((1-S)} A{SVQ}
Qr(tt)={SV{1-S)} AQ

Qs(t+D = {SVQ} A {(1-R) V (1-Q)}

Qs(t+1) =Q A {(1-5) V (1-Q)}

If S=R<Q<0.5, Then, Qr(t+1)=Q Qs(t+1)=Q.
If 0.5<8<Q, Then, Qg(t+1)=8 Qs(t+1)=1-S. So,

Qr(t+1)# Qs(t+1)
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Case 2) If S=R=Q
Qe(t+1) =S V{(1-R) A Q}
Qu(t+1) =S V {(1-S) A S}
Qr(t+1) =8

Qs(t+1) = {SVQ} A {(1-R) V (1-Q)}
Qs(t+1)=S A (1-S)
If $>0.5, Then, Qs(t+1)=(1-S), Qr(t+1)=S.

Qr(t+1)# Qs(t+1)

Case 3) If SFR>Q
Qrt+1)=S V{(1-R) AQ}
Qu(t+1)=S V {(1-S) A Q}
Qrt+D)={SVI1-S)} A{SVQ}
Qr(tt1)={SV({I-S)} A S
Qr(t+1) =S V {S A (1-S)}
Qe(t+1) =S

Qs(t+l) = {SVQ} A {(1-R) V (1-Q)}

Qs(t+1) = S A {(1-S) V (1-Q)}

If S<0.5, Then, Qs(t+1)= S A (1-Q)=S.

If S<0.5 and Q<0.5, Then, Qs(t+1)=1-Q and
Qr(t+1)=S. So,

Qr(t+1)# Qs(t+1)

A general case can be found to determine the
characteristic equation of RS flip-flop given in the
following equation;

Qu+)={SV(I-R}ABVQA {(I-R%S\’l(zll-Q)}

The hardware implementation of this fuzzy RS
flip-flop using the fuzzy AND, OR, and NOT gates
is shown in Figure 5.

io

T 11-a)

Figure 5. Implementation of Fuzzy RS Flip-Flop

5.2. D Flip-Flop
Table 3. Truth Table for D Flip-Flop

D® | QW Q(t+1)
0 0 0
0 1 0
1 0 1
1 1 1

Minterm expression for this flip-flop is given below
from Table 3.

Q+1)= DQ+DQ [5.13]
A similar maxterm expression is shown as follows:
Q=P +QY D@ +Q [5.14]

The characteristic equation of D flip-flop is found
by first extending the maxterm expression using De
Morgan’s Theorem, then this equation is fuzzified
as

Qi+t ={DVQ}A{DV{I-Q)} AD [5.15]

The realization of D flip-flop using the fuzzy AND,
OR, and NOT gates is given in Figure 6.

i
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Figure 6. Implementation of Fuzzy D Flip-Flop

5.3. T Flip-Flop
Table 4. Truth Table for T Flip-Flop
TW | QY | Q)
0 0 0
0 1 1
1 0 1
1 1 0

Minterm expression is given below:
Qt+1) =TQ +TQ [5.16]
Maxterm expression is shown as follows:
Q+)=(T+Q)(T+Q) [5.17]

And the characteristic equation of T flip-flop is
given by the following expression:

Qt+D={T VQIA{(1-D) V (I-QIA{(1-D AT}
[5.18]

The hardware implementation of this T flip-flop
using the fuzzy AND, OR, and NOT gates is given
in Figure 7.

S

Figure 7. Implementation of Fuzzy T Flip-Flop
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6. Conclusion

A fuzzy flip-flop concept has been proposed in
this paper. Flip-flop is the basic memory device, so,
fuzzy flip-flops may play an important role for
implementation of fuzzy computers. Since a flip-
flop can memorize a single bit of information, the
memory modules of the fuzzy computer may
include various types of flip-flops. In this study, the
characteristic equations of fuzzy flip-flops are
determined according to the rules of fuzzy logic.
The whole study contains all possible cases of the
flip-flop equations in theory and it compares the
properties of crisp logic and fuzzy logic. It also
gives an alternative approach for hardware
implementations of fuzzy AND, OR, and
INVERTER gates. The hardware implementations
of these flip-flops can be made using FET types of
operational amplifiers.
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