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ABSTRACT

This paper presents a new approach for the optimum
determination of the membership functions for a fuzzy logic
controller based on the use of the tabu search algorithm. To
demonstrate the efficiency of the proposed approach,
estimating of the output power fraction of evanescent field
absorption fiber optic sensor is selected. The simulation
results showed that proposed approach can be employed as a
simple and effective optimization method for achieving
optimum determination of the membership functions.

I. INTRODUCTION

Fuzzy logic controllers (FLCs) are intelligent control
systems characterized by a set of linguistic statements
based on expert knowledge or experience [1-5].
Processing of uncertain information, modeling of physical
systems using common-sense rules and linguistic
statements are the basis for fuzzy logic control.

A simple FLC consists of four major elements: a fuzzifier,
rule base, inference engine and a deffuzzifier (Fig.1) [3-
5]. The fuzzifier converts real system variables into fuzzy
variables. The inference unit provides the necessary
connection between the controller input and output fuzzy
sets. The rule base expressed in the form of IF-THEN
rules is used by the inference unit. The defuzzifier takes
the results of fuzzy reasoning and produces a new real
control action.
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Figure 1. The basic structure of FLC

The rule base of the FLC consists of the rules which
dictate control actions. Each rule has the potential to
suggest a control action. These rules are characterized by
a set of linguistic statements based on expert knowledge
or experience. The main advantage of this approach is that

is easy to implement the operator’s experiences. The rules
are often expressed using syntax of the form ‘IF
<antecedent>, THEN <consequent>’.

The antecedent of a rule gives a possible process state
while the consequent specifies a control action again in
terms of linguistic variables. The rule base is obtained
using the fuzzy sets that may be represented by a
mathematical formulation often known as the membership
function. This function gives a degree or grade
membership within a fuzzy set.

One of the main problems in designing any fuzzy system
is construction of the fuzzy membership functions
because the all changes in the membership functions will
affect the performance of the fuzzy control directly.
Therefore, optimum determination of the FLC
membership functions is an important factor for the
success of optimum process control.

In general, the membership functions and the rule base are
either acquired from a human expert using trial-and-error
method or from a referential data set with the
optimization algorithms such as genetic algorithm (GA)
[6-11], simulated annealing [12], tabu search [13,14].
GAs work with a set of solutions rather than a single
solution and consequently the computation time of the
GAs is too long. Moreover, evaluating the same solutions
several times is an other drawback for GAs. By using a
standard simulated annealing algorithm, obtaining the
global optimum of the search space might became very
difficult and, there is no guarantee of global optimum. In
the methods employed the tabu search algorithm (TSA),
the search of solution is based on the basis of the
automatic learning of fuzzy rule table with the preselected
membership functions.

The main aim of this paper is to propose a new method
based on the TSA for determining the most appropriate
parameter values characterizing the fuzzy membership
functions. The tabu search-based optimization of the
membership functions performs a new approach that is
more systematic, powerfull and faster than the other
heuristic methods.

I. TABU SEARCH ALGORITHM

Tabu search was first introduced by Glover as an
intelligent search technique to overcome local optimality
[15-17]. The flowchart of a standard TSA is given in
Fig.2.
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Figure 2. The flowchart of a standard TSA

One of the main ideas of TSA is to use of a flexible
memory (tabu list) [4, 15-17]. The objective of tabu list is
to exclude moves which would bring the algorithm back
to where it was at some previous iteration and keep it
trapped in a local minimum. The length of the tabu list is
an important parameter that must be carefully defined for
the effectiveness of the search. Too small a tabu list may
cause cycling of the tabu search, while too large a tabu list
may prohibit tabu search to reach certain good solution
regions. Tabu list is initialized empty, constructed in
consecutive iterations and updated circularly in later
iterations.

To improve the quality of the solutions visited, the search
moves from one solution to another wusing a
neighbourhood structure [15-17]. The neighbourhood of a
solution is the set of all formations that can be arrived at
by a move.

In order to force the search, TSA uses three basic
elements: frequency memory, recency memory and
aspiration criteria [4]. Frequency (long-term) memory
keeps the knowledge of how often the same choices have
been made in the past. The recency (short-term) memory
prevents cycles of length less than or equal to a
predetermined number of iterations. Aspiration criteria is
employed to avoid missing good solutions. As to this
criteria, if a move on the tabu list leads to a solution with
an objective function value strictly better than the best
obtained so far, it is possible to allow this move.
Frequency memory, recency memory and predetermined
tabu conditions related with these factors are play an
essential role for obtaining the tabu list.

At the last step of the algorithm, a stopping criterion
terminates the tabu search procedure either after a
specified total number of iterations have been performed
in total or, currently best solution was found.

Il. DETERMINATION OF MEMBERSHIP
FUNCTIONS USING TSA

Fuzzy membership functions provide the characterization
of fuzzy sets by establishing a connection between

linguistic terms (such as cold, warm, hot) and precise
numerical values of variables in a physical system.

The determination of fuzzy controller membership
functions using a TSA takes place in three phases:

(i) creation of a primary membership functions which is
incorrectly adjusted,

(i) parameterization, and

(iii) adjustment of these membership functions

Triangular shaped membership functions are used in this
work since it is one of the most common forms of
membership functions. Parameterized fuzzy membership
functions (A1, A2, ....,Ak) are shown in Fig.3.
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Figure 3. Parameterized fuzzy membership functions

TSA is used to adjust the parameters of the membership
functions in the fuzzy rule base. Optimum parameters of
the membership functions are determined by minimizing
an objective function.

When the same membership functions given in Fig. 3 are
used for the all variables of the system, for any physical
system with two inputs and one output, a sample rule
structure can be written as following:

Linguistic Rule
IF input variable (1) is A2, AND input variable (2) is
A3, THEN output variable is A2.
Parameterized Rule
IF (a3 ay» ax), AND (a3 axp
ay  A3).

as3), THEN ( a

As to this definition, the each rule consists of [(input
number + output number) x 3] parameters. The number of
the parameters required for defining a rule set is therefore
(rule number x (input number + output number) x 3]. This
value is also equal to the size of tabu list.

This definition of the membership functions has three
main advantages.

(1) Defining and understanding of the rules are easy.

(2) It provides the research of the all possible solution
points for the universe of discourse since the
membership functions have not symetric structure,

(3) Same control parameters can be obtained for different
membership functions and hence, the number of
membership functions can be reduced during the
optimization.



The neighbourhood values of the parameters (a;;, ap,,
..... ,a3) used to represent the membership functions (Al,
A2, .....,Ak) are found using the neighbourhood structure
given in Table 1. In this structure, for an element with N
bits, there is a solution vector with N bits.

Table 1. The neighbourhood structure

solution 1 0110
neighbour (1) 00110
neighbour (2) 11110
neighbour (3) 1 0010
neighbour (4) 10100
neighbour (5) 1 0111

According to the problem considered, tabu conditions
must be determined carefully. These conditions employed
are based on the recency and frequency memory criteria.
If an element of the solution vector does not satisfy tabu
conditions, then it is accepted as tabu.

I11.  APPLICATION

To demonstrate the efficiency of the proposed approach,
estimating of the output power fraction of evanescent
field absorption fiber optic sensor was selected.

An evanescent field (EF) is created in optical fibers when
light undergoes to the total internal reflection between the
core/cladding interface. The evanescent field is a fraction
of the total input power of the fiber and travels in the
cladding. If the fiber core is coated an absorbing material
(or it has an absorptive cladding), the EF is attenuated and
consequently the total power reached to the fiber end
decreases. This is the principle of the evanescent field
absorption fiber optic sensor (EFAFOS).

The calculation of the output power of the EFAFOS
requires the solution of the eigenvalue equation of the
multimode optical fiber. The eigenvalue equation under
the weakly guiding approximation is given by [18],
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Ji and K, are first kind and modified Bessel Functions of
order |, respectively, and a is the core radius.

h and q are the mode conditions of the core and cladding,
respectively and given by [18],

h= (ke - p2) " @)

and

q=(p2-n2)" (3)

where n; and n, are the refractive indices of the core and
the cladding, respectively. K, is the wave number in
vacuum and S is the propagation constant.

The next step for the calculation of the output power of
the sensor is to determine the power fraction of each
mode. By substituting ha and ga pair obtained from the
eigenvalue equation into the equation given by [18],
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modal power fraction of V" mode is determined. V is the
normalized frequency of the fiber and is given by [19],

v =kea(n? -nf 5)

By assuming, all fiber modes are excited with equal
powers, the output power of step-index multimode fiber
with a lossless core is given by [20],

Y
Pout :WZ exp( —on, L)
(6)

where a and L are the bulk absorption coefficient and the
length of the absorptive cladding, respectively. N is the
total number of the guided modes and given by [19],

VZ
N—T (7

Fig. 4 shows the output power fractions (Pou/Pin)
calculated for different alL values against V.
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Figure 4. Responses of the sensor used for fuzzy
modeling



In this work, (al) and V are the input variables of the
fuzzy model with the output of (Po/Pin) value. In order to
obtain the modeling of this system, a fuzzy rule base with
six rules represented by 54 parameters has been selected
intuitively. During the evaluation of the different fuzzy
rule sets, Mamdani’s minimum operation rule has been
used as a fuzzy implication function. The fuzzification
strategy was selected center of gravity method.

For i™ element of the solution vector, the following tabu
conditions are used by the search algorithm:

(1) recency(i)<rec.n
(2) frequency(i)> freq.avgfreq

Here, rec and freq are recency and frequency factors, n is
the number of element in the binary sequence and avgfreq
is the average chance of bits. In this study, rec, freq and n
are selected as 0.2, 2 and 5, respectively. The number of
element in the tabu list is determined as 54. The objective
function employed is defined by,

t
E={(1/t) kZ_I [ya(k)-y1} 2

where y, and yr are the desired and the actual outputs for
modeled system, t is the total number of the outputs. The
membership functions optimized by TSA and the fuzzy
rule base are given in Figure 5 and Table 2, respectively.
The simulation results obtained using the fuzzy rule base
in Table 2 are given in Figure 6.
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Figure 5. The membership functions optimized by TSA
for (a) aL, (b) V and, (c) (Pout/Pin)

Table 2. Optimum fuzzy rule base

v bl | b2 | b3 | b4 | b5 | b6
alL

al -- - - - cb --
a2 -- -- c5 -- -- --
a3 c2 -- -- -- -- --
a4 -- cl -- -- -- --
as -- - - c3 -- --
a6 - -- - - -- c4
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Figure 6. Simulation results

According to the Figure 6, performance of the fuzzy
model with the membership functions optimized by TSA
has a very good agreement with the desired results. These
results are not based on any mathematical equation.
Moreover, a significant reduction for the computation
time can be obtained using the fuzzy rule structure in
Table 2.



IV. CONCLUSION

In this paper, we present a new method for optimum
determination of the membership functions in a fuzzy rule
set based on the use of the tabu search algorithm. The
simulated responses of the system with the optimum
fuzzy rule base indicated that proposed optimization
method can be efficiently used for obtained the optimum
membership functions of a fuzzy logic controller.
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