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Abstract 
 

In this paper, a security constrained power dispatch 
problem for a lossy electric power system area including 
limited energy supply thermal units is modeled in such a 
way that the modified subgradient algorithm based on 
feasible values (F-MSG algorithm) can be used to solve it. 
This model considers bus voltage magnitudes and phase 
angles, off-nominal tap ratios (once there are off-nominal 
tap changing transformers in the power system) as 
independent variables. Load flow equations are added to the 
model as equality constraints. Power system transmission 
loss is inserted into the optimization model via those load 
flow equations. Unit generation constraints, transmission 
line capacity constraints, bus voltage magnitude constraints, 
off-nominal tap ratio constraints are added into the 
optimization problem as inequality constraints. We assume 
that limited energy supply thermal units are fueled under 
take-or-pay agreement.  

The F-MSG algorithm is tested on a fifteen-bus test 
system. The dispatch problem was also solved by other 
dispatch techniques that use pseudo spot price algorithm 
and genetic algorithm. Results obtained from the F-MSG 
algorithm and the other techniques are compared.  
 

1. Introduction 
 

A specific operation period of a lossy electric power system 
including limited energy supply thermal units is considered in 
this paper. During the operation period, system load values and 
the units that will supply those loads are assumed to be known. 
The total operation period is divided into subintervals where the 
system load values remain constant. The minimum value of the 
total fuel cost for the operation period is determined under some 
possible electric and fuel constraints. 

Under take-or-pay (T-O-P) fuel contract, a minimum value 
of the total fuel amount to be spent by the limited energy supply 
thermal units during the operation period is determined in 
advance. The utility company agrees to use at least this 
minimum amount. If it fails to use the minimum amount, it 
agrees to pay the cost of the minimum amount [1].  

In the literature, the economic dispatch problem for a power 
system area including limited energy supply thermal units was 
solved by various solution methods. Some of these methods use 
the pseudo spot price algorithm (PSPA) [2], the evolutionary 
programming [3], the Hopfield neural networks [4].  

The F-MSG method is a deterministic solution method, 
which uses deterministic equations at one point to produce the  
next solution point being closer to the optimum solution in the 
solution space; whereas the evolutionary methods work on a 
solution population rather than on a single solution and uses 
probabilistic tools to produce new solutions. In general, solution 
times for the evolutionary methods are comparably high with 
respect to those of deterministic methods for the lossy security 
constrained economic dispatch problems with convex cost 
curves.  

  In the F-MSG algorithm [5], the upper bound for the cost 
function value is specified in advance and the algorithm tries to 
find a solution where the cost function is less than or equal to 
the upper bound and all constraints are satisfied. If it finds it 
(feasible total cost), the upper bound is decreased a certain 
amount, otherwise (infeasible total cost) the upper bound is
increased a certain amount. The amount of decrease or increase 
on the upper bound for the next iteration depends on if any 
feasible or infeasible total cost value was obtained in the 
previous iterations. This process continues until absolute value 
of the change in the upper bound is less than a predefined 
tolerance value. 
 

2. Problem formulation 
 

In this section, a nonlinear programming model is presented for 
the economic power dispatch problem considered in this paper. 
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The meanings of the symbols used in this paper are given in the 
list of symbols section. 
 

2.1. Determination of Line Flows and Power 
Generations 
 

In order to express the total cost function in terms of 
independent variables of our optimization model, line flows 
should be written in terms of bus voltage magnitudes and phase 
angles and off-nominal tap ratios (see equations (1) and (2)). 
The following equations give the active and reactive power 
flows over the line being connected between buses  i  and k  in 
the thj  subinterval. 
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In the above equations, ,i jU and ,i j�  are  voltage magnitude and  

phase angle of bus i  in the thj subinterval, respectively, 

i k i kr j x�  is the series impedance of the line between buses i  

and k , i k i kg jb�  is the series admittance of the line between 

buses i  and k  where 1/( )i k i k i k i kg jb r j x� � � , sh i sh ig jb�  is 
the sum of the half line charging admittance and external shunt 
admittance if any at bus i , and ,i ja  is the off-nominal tap 

setting in the thj subinterval with tap setting facility at bus i . 

,i k jp  and ,i k jq  are the active and reactive power flows going 

from bus i  to bus k at bus i  border in the thj subinterval, 
respectively. ,k i jp�  and ,k i jq�  are the active and reactive 
power flows going from bus i to bus k at bus k border in the 

thj subinterval, respectively.  
 The total loss of the network in the thj  subinterval can be 
calculated by the following equations: 
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The cost rate function value of the thi unit in the thj  subinterval 
is taken as 
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where ib , ic , and id are constant coefficients. The total cost is 
also determined as: 
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2.2. Converting Inequality Constraints into Equality 
Constraints 
 

Since the F-MSG algorithm requires that all constraints need to 
be expressed in equality constraint form, the inequality 
constraints in the optimization model should be converted into 
the corresponding equality constraints. The following method is 
used for this purpose, since it does not add any extra 
independent variable into the optimization model in the 
conversion process [6]. The double sided inequality 

,i i j ix x x� �
  in the thj  subinterval can be written as the 

following two inequalities: 
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Then, we can rewrite the above inequalities as continuous 
equality forms by the following: 
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If ,i i j ix x x� �
   , it is obvious that ,( ) 0i j ix x�

�  , 

,( ) 0i i jx x�
�  and, � �� �,max 0, 0i j ix x�

� � ,

� �� �,max 0, 0.i i jx x�

� �  So the inequality constraints in (17) can 
be represented by the corresponding equality constraints in (18).   
In this paper the inequality constraints, given in equations (4)-
(8), are converted into the corresponding equality constraints in 
this manner. 
 

3. The Modified Subgradient Algorithm Based on 
Feasible Values 

 

The nonlinear optimization problem described by equations (1)-
(18) can be represented in the standard form given below: 
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where 1,1 1, ,1 , 1,1 1,[ , , , , , , , , , ,
max max maxj N N j jU U U U � �� � �� � � ��x  

,1 , 1,1 1, ,1 ,, , , , , , , ,, , , ]
max max tap tap maxN N j j N N ja a a a� �� � � �� �  is the 

independent variable vector. ( )F x  is the objective function 
which is given in equation (16), and 

1 2( ) ( ), ( ), , ( )
EQNh h h� ��

� �
��h x x x x  is the equality constraint 

vector. It includes all the original equality constraints, which are 
given in (2)-(3), and the equality constraints, which are obtained 
from converting all the inequality constraints given in (4) to (8) 
into the corresponding equality constraints via the method given 
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in Section 2.2 [6]. Note that inequality constraints can also be 
converted into equality ones using any other approach. K  is a 
sufficiently large compact set containing the potential values of 
x . Region K is bounded by the upper and the lower limits of 

the voltage magnitudes of the buses and the upper and the lower 
limits of the tap settings of the transformers, which are given in 
(7)-(8). Note that the voltage magnitude and phase angle of the 
reference bus, ( ,ref jU , , , 1, ,ref j maxj j� � � ), are not included 
into x  since they are not independent variables and remain 
constant during the solution process. In solving the constrained 
optimization problem given by equation (19), the first step is to 
convert it into unconstrained one by constructing the dual 
problem. This can be done by using various LaGrange functions 
[7].  LaGrange function must guarantee that the optimal solution 
of the dual problem be equal to that of the primal constrained 
problem. Otherwise, there will be a difference between the 
optimal values of these problems; in other words, a duality gap 
will occur. The classical LaGrange function guarantees the zero 
duality gaps for the convex problems. However, if the objective 
function or some of the constraints are not convex, then the 
classical LaGrange function cannot guarantee this. Therefore, 
for the non-convex problems, suitably selected augmented 
LaGrange functions should be used. Considering the non-
convex nature of our problem, we form the dual problem by 
using the following sharp augmented LaGrange function [8]: 
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where 1 2, , ,
EQNu u u R��  and 0c  are LaGrange multipliers 

(dual variables). The dual function associated with the 
constrained problem is defined as  
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Then, the dual problem is given by 
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For the given dual problem, the conditions of guaranteeing zero 
duality gaps are proven in [8].  
 

3.1. The F-MSG Algorithm 
Initialization Step: Select arbitrary active and reactive power 
generations for all subintervals. Then, perform AC power flow 
calculations with the corresponding selected active and reactive 
power generation values in all subintervals to obtain the initial 
values for the voltage magnitudes and phase angles of the buses 
in all subintervals. Calculate the initial total cost TOTF .  
Step 1) Choose positive numbers 1 2 1, ,! ! "  and M (upper 
bound for m) . Set =1n , 0p � , 0q � , and n TOTH F� . 

Step 2) Choose 1( , ) EQNn n
1 c R R

�
� �u  and (1) 0#�  and set  

11, , ,n n
m 1 mm c c� � �u u

Step 3) Given ( , ),m mcu  solve the following constraint 
satisfaction problem (CSP) 
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If a solution to (23) does not exist or ( )m M#� , then go to Step 
6; otherwise, if a solution mx  exists then check 

whether ( )m � 0h x . If ( )h x � 0m  (or if 1( )m !h x ) then go 
to step5, otherwise go to step 4. 
 

Step 4). Update dual variables as 
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where ms  is a positive step size parameter defined as 
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where$ and % are constant parameters with 0$ #  and 0 2.%& &  
Step size ms  corresponding to the dual variables ( , )m mcu  
should also satisfy the following property: 
 

� �( ) ( )h x u� � # �m m m ms c m .    (27) 
 

Set 1m m� � , update ( )m�  in such a way that ( )m '�(�  as  
m '�( , and go to step 3. 

 

Step 5) If 0p � , it means that any infeasible total cost rate 
value has not been chosen yet, then set 1n n�

" � " , otherwise set  

1 (1/ 2)n n�
" � " . If 1 2n !

�
" & , then stop, mx  is an approximate 

optimal primal solution, and ( , )m mcu is an approximate dual 

solution; otherwise set � �1 1min ( ),n m n nH F H
� �
� � "x , 

1q q� � , 1n n� � , and go to step 2. 
 

Step 6) If 0q � , it means that any feasible cost rate value has 
not been chosen yet, then set 1n n�

" � " ; otherwise, set 

1 (1/ 2)n n�
" � " . If 1 2n !

�
" &  then stop, and in this case, the last 

calculated feasible mx  is an approximate optimal primal 
solution, and ( , )m mcu is an approximate dual solution; 
otherwise, set 1 1n n nH H

� �
� � " , 1p p� � , 1n n� �  and go to 

step-2. 
In this algorithm, steps 3 and 4 can be considered as the 

inner loop, and steps 2, 5 and 6 can be considered as the outer 
loop. We call any outer loop, in which a feasible cost rate value 
is generated by the algorithm, as a feasible state, fn . The 
following problem is solved by using GAMS® solver: 
 

0
( , , ) 0x u

x

�

� �

�
��

n

Minimize f
L c H

Subject to
K

   (28) 

where f  is a ‘fictitious’ objective function which is identically 
zero, or can be taken as any constant value [5].  

The way of updating the dual variables ( , )m mcu  in step 4 
will force the solution in Step 3 to converge to the feasible 
solution (see Theorems in [5]).  

4. Numeric Example 
The proposed dispatch technique was tested on a fifteen-bus 
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 test system. Please refer to reference [2] for all necessary 
data for the test system. The initial parameters, explained in 
section 3.1, are chosen as 

100, 1,$ %� �
4

1 1 10 ,!
�

� � 1 2000 ,R" �  
1
15000, 10cM � � and 1

1 (1 511)[0,0,...0,0]u
�

� . Also we chose 

the function ( )� m  as ( )m m�� . The maximum active power 
transmission capacity limit for all transmission lines is taken as 100 MW. 
The common reactive power generation limits of all units are 
taken as 2.5max

GiQ pu� , 1.0min
GiQ pu� � , � �, .S Ti N N�  The 

simulation program was coded in MATLAB. 
The dispatch problem considered in this paper is previously 

solved by using the PSPA [2] and genetic algorithm [9]. The 
selected pu initial active and reactive generations in each 
subinterval are given in Table 1. The initial bus voltage 
magnitudes and phase angles in each subinterval are found by 
performing load flow solutions with the selected active and 
reactive power generations. No more load flow calculation is 
carried out in the subsequent stages of the solution technique. In 
the following three cases, the same dispatch problem is solved 
by using the F-MSG algorithm.  

 

4.1. Case 1: The Fuel Constraint is Not Considered 
 

To show the effect of T-O-P fuel contract, first we solved 
the dispatch problem with the assumption that the fuel constraint 
does not exist. Therefore, we did not consider the fuel constraint 
in equation (3) and we applied the F-MSG algorithm to the 
dispatch problem with the calculated initial bus voltage 
magnitudes and phase angles. In 20 outer loops and 15 feasible 
states, the solution point is reached. The consumed gas amount 
and the total cost are found as 17494.9543spentC �  ccf and, 

182572.7874 2 50000 ( )TF R� � � �  When the same 
problem is solved by means of the PSPA, the consumed gas 
amount by the limited energy supply thermal units and the total 
cost were found to be 17497.069spentC ccf�  and 

185638.566 2 50000TOTF � � � � 285638.566 .R  Also, from the 
solution, which is produced by the method based on genetic 
algorithm, the consumed gas amount by the limited energy 
supply thermal units and the total cost were found to be 

17706.323spentC � ccf and 184806.204 2.0 50000TF � � �  
284806.204 .R�  We see from the figures given in the above 

that the solution technique based on the F-MSG method gives 
the lowest total cost when the fuel constraint is not considered. 
 

4.1. Case 2: The Fuel Constraint is Considered 
 

In this case, the fuel constraint is added into the dispatch 
problem and it is solved by means of the F-MSG algorithm by 
using the initial bus voltage magnitudes and phase angles. The 
amount of gas, spent by the limited energy supply thermal units 
at the initial point, is found to be 44437.0011spentC � ccf. 
Therefore, the initial total cost value is calculated 
as 0 152014.0190 2 50000TOTF � � � � 252014.019 .R In 18 outer 
loops and 7 feasible states the solution point total cost is found. 
The solution-point active and reactive power generations for the 
current case are given in Table 2. By using the active power 
generations in Table 2, the total consumed gas amount and the 
cost are calculated as 50000.0041spentC �  ccf and 

243826.4140TOTF � R, respectively. The same dispatch problem 

Table 1. Selected initial pu generations, ( 100baseS MVA� ). 

 
 

was also solved by means of the PSPA [2] and, the genetic 
algorithm [9]. From the solution by the PSPA, the total 
consumed gas and the total cost were found to be 

50018.8spentC ccf� and 244669.0TOTF �  R. The same values 

from the solution by the genetic algorithm were obtained as 
49999.747spentC ccf� and 244898.621TOTF �  R. It is seen 

from the presented figures that the F-MSG algorithm gives the 
lowest total cost and the most accurate gas consumption 
values.  
 

4.3. Case-3: Active Power Generation and 
Transmission Line Constraints are Hit in the Solution-
point   
 

In this section, in addition to consideration of the fuel 
constraint, 3

max
GP  and 12

maxp   are taken as equal to 145 MW and 75 
MW, respectively just to create both a generation and a 
transmission line constraint hits in the solution-point since 

3 , 6GP  and 12 , 6p  were found to be 147.7100 MW and 80.2611
MW, respectively in the solution-point of case-2. We used the 
same initial complex bus voltages and, in eighteen outer loops 
and four feasible states; the total  active generation cost is 
converged to 244385.2371TOTF �  R. The total gas consumption 
of the limited energy supply thermal units is found to be 

49999.9867spentC � ccf. 2GP  and 12p  are obtained as 

145.0024 MW and 75.0184 MW which are very close to 2
max

GP  

and 12
maxp , respectively  

 
 

5. Discussion and Conclusion 
 

In this paper, we propose a security constrained power 
dispatch technique using the F-MSG algorithm for a power 
system area including limited energy supply thermal units. The 
dispatch technique is tested on a fifteen-bus test system, which 
was solved by means of the PSPA and the genetic algorithm 

 Time interval number, (j) 
1 2 3 4 5 6

1,G jP 1.303 1.040 1.282 1.625 2.032 2.567 

1,G jQ 0.610 0.724 0.763 0.760 0.600 0.500 

3,G jP 1.100 1.200 1.200 1.200 1.200 1.200 

3,G jQ 0.375 0.445 0.575 0.680 0.620 0.640 

8,G jP 1.100 1.200 1.200 1.200 1.200 1.200 

8,G jQ 2.185 2.225 2.370 2.475 2.410 2.400 

10,G jP 1.000 1.100 1.200 1.200 1.200 1.200 

10,G jQ -0.145 -0.135 -0.116 -0.082 -0.093 -0.096 

11,G jP 1.000 1.100 1.100 1.200 1.200 1.100 

11,G jQ 0.180 0.210 0.220 0.205 0.210 0.257 

12,G jP 1.000 1.100 1.200 1.200 1.200 1.200 

12,G jQ 0.720 0.797 0.817 0.857 0.851 0.875 

14,G jP 1.000 1.200 1.200 1.200 1.200 1.200 

14,G jQ 0.590 0.655 0.723 0.780 0.747 0.788 

,LOSS jP 0.303 0.340 0.382 0.425 0.432 0.467 
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Table 2. Optimal pu generations for case-2. 

 Time interval number, (j) 
1 2 3 4 5 6 

1,G jP 1.51144 1.29622 1.49889 1.78941 2.15239 2.63281 

1,G jQ 0.62294 0.73012 0.76802 0.76619 0.60944 0.51872 

3,G jP 1.14911 1.24392 1.31685 1.37339 1.41781 1.47710 

3,G jQ 0.81219 0.89307 1.03806 1.15535 1.09156 1.09483 

8,G jP 0.46178 0.48031 0.49425 0.51190 0.52046 0.53177 

8,G jQ 1.25221 1.28552 1.40387 1.50582 1.43794 1.40916 

10,G jP 0.61910 0.70314 0.75200 0.76510 0.75940 0.74693 

10,G jQ 0.21325 0.22393 0.25320 0.29095 0.27676 0.27157 

11,G jP 1.18974 1.28971 1.30407 1.32115 1.31274 1.27014 

11,G jQ 0.19438 0.22803 0.23522 0.22218 0.22982 0.27534 

12,G jP 1.35401 1.55035 1.60204 1.62530 1.62189 1.57880 

12,G jQ 0.67818 0.76883 0.79669 0.83031 0.82041 0.83522 

14,G jP 1.20704 1.36859 1.40540 1.42784 1.43316 1.41105 

14,G jQ 0.7167 0.78767 0.854413 0.908547 0.865878 0.907311 

,LOSS jP 0.2922 0.3323 0.3735 0.4142 0.4178 0.4487 
 

 

previously. Among the results obtained from the above 
techniques, the proposed technique provides the lowest total 
cost and the most accurate gas consumption values. The fuel 
constraint, which can take place, due to T-O-P fuel agreement 
can also be handled by using the effect of the scaling factor on 
the total fuel consumption by the limited energy supply thermal 
units [2]. Usage of the scaling factor decreases the number of 
independent variables that is used in the solution of considered 
dispatch problem as well. We are currently performing research 
on application of the F-MSG method to some other economic 
power dispatch problems with non-convex total cost curves. 

To our knowledge, the proposed solution technique has not 
been applied to the problem considered in this paper. 

 

6. List of Symbols 
 

R : a fictitious monetary unit 
N : number of buses in the network. 

TN , SN : sets that contain all limited energy supply thermal and 
normal thermal units in the network, respectively. 

B iN : set that contains all buses directly connected to bus i. 

tapN , L : sets that contains all tap changing transformers and 
lines in the network, respectively. 

jt : length of time interval j, (h). 

,l jp : active power flow on line l in the thj  subinterval, (pu or  
MW). 

, ,,G i j G i jP Q : active and reactive power generations of the thi unit 

in the thj  subinterval, respectively, (pu or  MW, MVar). 

, ,,Load i j Load i jP Q :  active/reactive loads of the thi  bus in the thj   
subinterval, respectively ,(pu or  MW, MVar). 

,LOSS jP : total active loss in the thj  subinterval, (pu or MW). 

,( )T GT jC P : fuel consumption rate for the thT  limited energy  

supply thermal unit in the thj  subinterval, (ton/h, ccf/h, etc.). 

totC : minimum total fuel amount that should be spent by all 

 limited energy supply thermal units during the operation period  
according to T-O-P fuel contract (ton, m3, ccf, etc.).  

spentC : amount of the total gas spent by the all limited energy 
supply thermal units during the operation period, (ton, m3, ccf,
etc), ( 3 31 1000 27.317ccf ft m� � ) 

, ; ,min min max max
G i G i G i G iP Q P Q : lower/upper active/reactive generation 

limits of the thi generation unit, respectively, � �,S Ti N N� , (pu 
or MW, MVar). 

max
lp : maximum active transmission capacity of transmission 

line l , (pu or MW). 
EQN , VARN : number of equality constraints and independent 

variables, respectively 
n
mx : independent variable vector obtained at the thm  iteration of  

the inner loop of the thn  outer loop iteration. 
,n n

m mcu : dual variables calculated at the thm  iteration of the 

inner loop of the thn  iteration of the outer loop. 

ms : positive step size parameter calculated at the thm  iteration 
of the inner loop. 

n
TF : total cost value which will be checked in the thn  outer 
loop, (R). 

1n�" : decrement/increment on nF  value, at the end of thn  outer 
loop iteration, according to whether nF  is feasible or not, (R).  

1 2,! ! : tolerance values for ( )h x  and n" , respectively. 
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