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Abstract—Minority carriers continuity
equation has been studied by Green’s function in
rectangular coordinate system. The exact solution
of this differential equation, both time and space
dependent has been obtained by Green’s function
approach. Calculation has been done for the p-
region of a p-n junction under the low-level
injection and  quasineutrality assumptions.
Stimulation of carriers has been dome by an
impulse of light. Green’s function approach gives
an opportunity to envisage each nonhomogeneous
boundary and initial value contribution to the
device performance. The solution shows a clear
picture of the impact of physical parameters on
device performance. The method is more
convenient for comparing different devices’
performance, particularly in case of light -
semiconductor interaction.

I. INTRODUCTION

Conventional solution of one dimensional
continuity equation results in a combination of
hyperbolic functions, which are very much different
in behaviour [1]. In some cases, it is hard to interpret
the solution and extract the design parameters. Even
in case of nonhomogeneous boundary conditions the
solution itself is more difficult to get [2]. Generally,
with some simplifying assumptions, approximate
solutions are used.

The Green's function approach gives exact
solution of the differential equation in integral form.
Contribution of generation function, boundary and
initial values are separate. The main difficulty of the
method is construction of Green's function which
requires solution of homogeneous version of the
problem. Once the Green's function of the problem
has been constructed, the solution of any kind of
generation function, nonhomogeneous boundaries,
and initial value are the matter of some integral taken.
A drawback of the method is that the solution has a

serial form. The convergence of series is dependent on
boundary values. In this particular problem, it rapidly
converges. Green's function solution of the
continuity equation gives more elegant presentation of
device properties. It is easy to interpret, and to see the
impact of physical parameters on device performance.

One dimensional continuity equation has the same
mathematical form as that of heat conduction problem
except for the recombination term. The heat
conduction problem has been well-studied in the
literature{3]. The solutions of various problems have
been tabulated for ready use. To utilise this
opportunity, the continuity equation has been
transformed to the heat conduction problem. After
appropriate solution of the heat conduction problem
by Green's function, an inverse transformation has
been invoked to get minority carrier population
throughout the device.

In this paper, the Green’s function approach to the
heat conduction problem has been reviewed, first.
Then, the continuity equation of minority carriers has
been transformed to the heat conduction equation.
Following that, the Green's function of the
transformed problem has been constructed. The
solution of transformed problem has been calculated
for specific boundary values. Finally, the minority
carriers population throughout the device has been
calculated by using inverse transformation.

II. REVIEW OF HEAT CONDUCTION PROBLEM

The heat conduction problem can be described as
finding out variation of temperature in a solid. The
solution of the differential equation under the various
boundary and initial values has been presented in one-
dimensional rectangular coordinate system[3].

A general nonhomogeneous heat conduction
differential equation with accompanied boundary and
initial values is as follows:
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Where y is temperature; £ and a are constants of
differential equation; k,, k», k), and A, are constant for
convenient boundary donditions;, f;(1), fit) are
nonhomogeneous boundary functions; F(u) is the
initial value function; g(x,2) is the generation function.

The Green's function approach to the solution is as
follows:

for t>1,

y(u,t)= f Glutv,7),_, F(v)dv
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The Green's function, G(u!v,7) , presents the
temperature at position # and time ¢ in a solid in case
of a heat source of impulse has been situated at
position v and time . Also, boundary values are
homogeneous. y(u,¢) is total temperature variation in
the solid at position # and time 7 under the original
generation function, initial and boundary values. The
first term is the contribution from initial value of F(u);
the second term is the contribution from generation
function of g(u,7); last two terms are contributions
from nonhomogeneous boundaries. Once the Green's
function of the problem has been constructed, the
solution for any arbitrary generation function, and any
arbitrary nonhomogeneous boundary value can be
calculated by integration. In order to avoid the
replication, the construction of the Green's function
has been done according to the specific boundary
conditions of particular continuity problem in the
following subsections.
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OI. SOLUTION OF CONTINUITY EQUATION
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Fig.1 Schematic presentation of a planer p-n junction.

One can construct the following well-known
continuity equation for minority carriers. The problem
has been posed in the p-region of a p-n junction bulk
semiconductor device (Fig.1) with suitable boundary
conditions. The quasineutrality and low-level
injection have been assumed[1,2].
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where, L, is diffusion length; D, is diffusion

constants; 7, is recombination time constant; n is
excess minority carrier concentrations (1/cm™); g is
generation function.

One dimensional (1D) device structure is shown in
the Fig 1. The problem has been transported to the
new more convenient coordinate system by changing
the variable for p-region.

u=x-x_,
P

x=x,2>u=0
x=w,>u=w, -x =L
du=dx

x,<x<w, =>0<u<l
According to the new defined independent variable,
the differential equation reads
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Except recombination term, the differential equation
has same mathematical form as that of heat
conduction problem. In order to get rid of
recombination term, the following transformation
should be carried out[4]:

Vo (u.0)=n(u,1)e"™ (6)

The continuity equation has been transformed to the
heat conduction equation.
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The last differential equation with accompanied
boundary values constitute the problem which is
subject to Green's function solution. Both Eq.1 and
Eq.7 have the same cast form. So, the solution of the
both should be same mathematically. The main task,
here is to construct the related Green's function. For
that reason, the generation function should have the
following form.

8r(w)=Mé(u—up) ®

where, u, =x, - x,

In other words, M electron-hole pairs per cm™ per
second have been injected at the position of u=u;.

First of all, the homogenous problem should be
considered.
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For the solution, one can apply the technique of
separation of variables [3,5].
V(U 1) = (1)U, () (10)
By the end, one gets the following ordinary
differential equations with separation constant, £,
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The solution of time dependent ordinary differential
equation is straightforward.

T, (f)y= e Dobnt (14)
The second ordinary differential equation with
accompanied boundary conditions form special
Sturm-Liouville problem, which has the following
solution[5].

Up(B o) = Sinf (s
Combining both solutions, one obtains,
Va0 = S Co U Brie™™P (16)
m=1

Co=—2fuammm@e  an

m = n m> v n v

N(B.,.)o
] 2

NGBy L =
B=m> | m=123,. (19)

B ts zero of Sin( B,,L)=0

B and U(B, ,u) are eigenvalue and eigenfunction of

Special  Sturm-Liouville  problem, tespectively.
Coefficients C,, can be determined by the orthogonal
property of the eigenfunctions. N(B,) is the
normalising factor of eigenfunctions.
After appropriate substitutions:
2% p Bl
Valts)= 7 2. &P Sin( B)
m=1
| sin 8 r1 1
o
(20

v is a dummy variable has been introduced for
calculation of integral.
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In order to extract Green's function, the solution
should be rearranged in its cast form[3].

ACHE f Gu(wtv,o) _Fo& 1)

Yo(u,t)= f i Z e~DaPat Sin( B,,0)Sin( S ,,v):l

x F, (v)dv
(22)
The term in square brackets i3 Green's function of the
transformed problem at 7 = 0. For any 7, t should be
replaced with (#-7) in above Green's function[3].
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This is the Green's function of the transformed
problem for any £>¢. When Eq.1 type solution is
considered, since the boundary values (f; and /) and
initial value (F(»)) are zero, the only term that should
be considered is the generation term.

' D
vatus) = 2 e I 6, v
=0 v=0
i,
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(24)

n
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For an impulse type generation function,
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After carrying out the integration, one obtains the
following solution of transformed problem.

Ya(u,1)=M— z——— ¢! — e Db
V=ML L B )
x Sin( B t)Sin( Bty )
(26)
Using inverse transformation,
n=y, e @

After returning to the original coordinate system, and
substituting related parameters,

u=x-x, , Up=X;~X%

14 2

ﬂ,,,:miz—  m=123,..

one obtains:
Z LY
M— ——— 1- *a
n(x,t)= e ﬂm) ( e )
% S’"[ﬂm(x X, )]S’n[ﬂm(xl —Xp )]

(28)

As a result of this calculation, this describes the
electron population in the p-region of a p-n junction
in terms of time and space, under the injection of M
electron-hole pairs per cm™ per second. In case of any
arbitrary generation function and nonhomogeneous
boundary conditions, it is only matter of some
integrals-taken. Any integration difficulties can be
overcome at least by numerical integration.

TABLE I
SIMULATION DATA[6].
Number of injected carriers, | 10™
M[lfcm’]
n!g concentration, N 5.010"

[1/em]

Recombination time constant, | 5.0 107
7 [s]

Depletion edge in p-region, 0.110"
X [cm]
p-region length, 1.110%
w, [cm]

Light source placement, x; 0.6 10™
[cm]

Electron population for a Gads p-r junction with
tabulated properties is given in the Fig.2.
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Fig.2 Both time (#) and space (x) dependent electron population (r7)
in the p-region of a Gads p-n junction.

I DISCUSSION OF RESULTS

The Fig.2 shows gradual development of electron
population throughout the device in time and space.
The time dependence develops very quickly and
saturates a maximum value at the carrier injection
point. In space, since the electrons have same
boundary properties at the both ends, the population is
symmetrical in both sides of injection point. As can be
seen from Eq.27, coefficients of series determine the
electron population which are depend on the device
active region, recombination time constant and
diffusion length. Device designers should consider
these coefficients for particular applications.

The time dependent part is quickly dieing out in
case of (L, f,)" >>1,

L
where, L, 8, = L,,(%}n = I(T"}n ,m=123, .

(29)

If one is considering a fast device, he should satisfy
this condition pretty well. In other words, the device
should have very short diffusion length as well as
very short active device area.

The time independent coefficients of series have
the following form,

M(z _f_}
LY (L,Bm) +1

In case of (L B.) <<1,
approximation,

(30)

one gets the following

Gn

In case of (L,B.) >>1, one gets another
approximation,
2L | 1 ]
~M|—5—|— 32
A{” 2l)nI”’2 ( )
For present device, L #_=192xm >>1, and

coefficient is ~ 2.710° (sz :
m

For L,> 3L this approximation can be easily applied.
The sum, approximately, is just a few first terms of
series. On the contrary, if this condition is not
satisfied, the sum will increase until the condition is
satisfied. Eventually, the sum will saturate after a few
terms. The convergence of series is strongly
boundary value dependent. Generally, the series
shows good behaviour.

IV. CONCLUSION

The exact solution of the continuity equation of
minority carriers has been obtained by Green's
function approach. The solution is a convergent series
of sinusoidal functions, which are well-tracked. The
impact of physical parameters on device performance
is clear. One can easily interpret outcome of the
solution. Device designer can extract design data from
the coefficient of series for particular application. The
solution for any kind of generation function,
nonhomogeneous boundaries, and initial value is
straightforward.
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