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ABSTRACT 
This paper deals with problems on isomorphic 
decomposition and controllability of a kind of nonlinear 
systems  possessing symmetries on basis of quotient 
systems. The isomorphic decomposition formations of 
these systems are drawn. Finally, it is shown that 
controllability of the original  systems can be determined 
by that of  subsystems, which are obtained through 
isomorphic decomposition. Corresponding sufficient and 
necessary conditions in terms of two novel theorems are 
derived. 
 

I. INTRODUCTION 
The differential geometric approach [1]-[4] to the study 
of general nonlinear and other complex systems has 
enabled the discovery of entirely new insight into the 
theory of systems and control [5]. Since the seminal 
paper by Isidori and his co-authors [6], early works [7]-
[13] have paved the way. Following these discoveries, 
during the recent years, a remarkable progress has been 
made in the study of systems possessing symmetries in 
structure [14]-[17] as well as of interconnected and 
complex systems [18]-[20]. In general, studies of the 
features and the properties in nonlinear systems are 
much more difficult, than those in linear systems 

because of the complexity of the structure of nonlinear 
systems, of course [15], [19]. Hence, researchers have 
focused their attention on systems having somewhat 
special structure, and certain systems possessing 
symmetries and similarities just represent such classes 
of systems. In fact, the symmetric structure is rather 
general it can bring about a great convenience for 
theoretical studies and enhance their application. 
Therefore this approach using differential-geometric 
techniques has been evaluated favourably by a many 
scholars beginning with the linear case first [9]-[13].  
 
The concept of symmetry for nonlinear control systems 
was first presented by Grizzle and Marcus [12] in 1985. 
They have dealt with some problems on symmetric 
systems  such as their local and global decompositions. 
Study in this area has been more expanded since then. 
The controllability of systems possessing symmetries 
has hardly been studied in the past several years. Zhao 
and Zhang first presented the concept of general 
symmetry and discussed the problem of controllability 
in [14]. However, they did included into their study the 
controllability by system decomposition. The 
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information about subsystems was not therefore used to 
its full.  
 
On the grounds of the results in [14] and the general 
study [15] by Zhang, firstly, a concept named solvable 
general symmetric systems is presented in this paper 
and further exploited. Then the relationship between 
isomorphic decomposition and controllability is dealt 
with. On the one hand, it is considered from the angle 
of view on quotient systems, and, on the other hand, it 
is discussed from the viewpoint of feedback quotient 
systems. Corresponding sufficient and necessary 
conditions between original and decomposed systems 
are derived from these two points of view.  
 

II.  PROBLEM STATEMENT AND RELEVANT 
MATHEMATICAL DEFINITIONS 

Consider the following smooth, general, nonlinear 
control system  
 

!x f x u= ( , ),                                              (1) 
 
where all x M u U∈ ∈,  , and M  is a smooth 
manifold with n -dimensions and U  is a manifold 
admissible controls. Note that in this paper, smooth will 
mean the class of functions C ∞ . 
 
A left action (or G -action) of a connected Lie group 
G  (with k -dimensions) on M  is a smooth mapping 
Φ:  G M M× →  such that : 

for all x M e x x∈ =, ( , ) Φ ;  

for each g h G g h x gh x, ,  ( , ( , )) ( , ) ∈ =Φ Φ Φ for 
all x M∈ . 
  
The other left-action is a smooth mapping 
θ θ: , ( , , ) ( , )  G M U M U g x u x ug× × → × "

. Φ is free and proper. So M G/  and 
Gx x g Gg= ∈{  }Φ : are n k− -dimensional and k -
dimensional manifolds respectively. Suppose further 
that p M M G: / →  admits a cross section σ . 

( ) )(1 xR  denotes a reachable collective (of system (1)) 

at point x , and ( ) )(10 σRd ∈  means that each 

x( )∈ σ  can reach d0 . 
 
Below the necessary the definitions and concepts for 
dealing with system decomposition problem, some 
compiled from the literature and some novel ones are 
introduced, are presented. Certain objects such as 

manifolds, bundles, and distributions are not defined in 
the paper as they are now standard in the nonlinear 
systems literature [5]-[8], [12], [14]-[19]; standard 
mathematical references are [1]-[4].  
 
Definition 2.1[12]: Let θ  and Φ be actions of G  on 
M U×  and M  respectively. Then the system (1) has 
symmetry ( , , )G θ Φ if it commutes for all g G∈ , 
where T gΦ  is the tangent map of Φg , π is a smooth 
fiber bundle and π M  is the natural projection of TM  
on M  (see Figure 1). 
 
Definition 2.2 [12]: ( , )G Φ  is a state-space symmetry 
of system (1) if ( , , )G θ Φ  is a symmetry of system (1) 
for θ g g gIDU x u x u= ( , ): ( , ) ( ( ), )Φ Φ " . 
 
Definition 2.3: ( , , )G qΦ  is a general symmetry of 
system (2.1) if there exists a smooth mapping 
q G U U g u q u g: , ( , ) ( , )  × → "  such that  
 

( ) ( ).),(,),( guqxfuxf gg Φ=Φ
∗

        (2)  

 
Definition 2.4: A smooth mapping 
q G U U g u q u g: , ( , ) ( , )  × → "  is solvable if 
there exists u q u g U' ( , )= ∈∗  such that  
 

q u g u( ' , ) ,=   ∀ ∈ ∈u U g G, .               (3) 
 
Definition 2.5: System (1) is solvable general symmetry 
if ( , , )G qΦ  is general symmetry of the system (1) and 
q  is solvable. 
 
Definition 2.6: The quotient system of the system (1) is 
the system  
 

!
~( , ) ( ( ), )y f y u p f y u= = ∗ σ                  (4) 

 
defined on manifold M G/  for u U∈ . 
 
Definition 2.7: The feedback quotient system of the 
system (1) is the system 
 

!
~'( , ) ( ( ), ( ( ), ))y f y u p f y y v= = ∗ σ α σ  

                                                                     (5) 
 
which is defined on manifold M G/  for all 
v V y M∈ ∈, ( ) σ , where u y v= α σ( ( ), )  is 
feedback law and V  is a permit control manifold. 



 
III. ISOMORPHIC DECOMPOSITION OF 

SYSTEMS POSSESSING SOLVABLE GENERAL 
SYMMETRIES 

In this section, the concrete formations of isomorphic 
decomposition of systems possessing solvable are 
given. We begin with a lemma. 
 
Lemma 3.1 [14]: Suppose the system (1) is a general 
symmetry system. Then 
 
(a) p x t( ( ))  is a integral curve (starting at point 

p x( )0 ) of system (4) if x t( )  is a integral curve 
(starting at point x0 ) of system (1). 

(b) there exists a integral curve x t( )  (starting at point 
x0 ) of system (1) such that  ( ) ( ( )) y t p x t= if 
 ( )y t  is a integral curve (starting at point p x( )0 ) 
of system (4). 

 
Using this lemma, it is possible to derive and prove the 
following conclusion. 
 
Theorem 3.1: Suppose system (1) is a control system 
with general symmetry ( , , )G qΦ , Φ is free and 
proper, q  is solvable, and p M M G: / →  admits a 
cross section σ . Then system (1) is isomorphic to the 
system 
 
!( ) ~( ( ), ' ( )) ( ( ( )), ' ( ))y t f y t u t p f y t u t= = ∗ σ   (6a) 

( )( )
)))(©)),((()(

))(©)),((((~)(
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−
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                                                                                 (6b) 
where u q u g' ( , )= ∗ . 
 
PROOF: The proof is given in the accompanied 
supplement due to paper size limitations.  
 
 
Theorem 3.1 shows that systems possessing solvable 
general symmetries, under certain conditions, can be 
isomorphic to two subsystems. So, it is natural one to 
pose the questing what a relationship there may exist 
between the former and later system structures. It is this 
idea precisely that has led us to derive the result 
presented in the subsequent section. 
 

 
IV. CONTROLLABILITY OF SYSTEMS 

POSSESSING SOLVABLE GENERAL 
SYMMETRIES 

This section deals with controllability of this kind of 
systems with the symmetry property as mentioned 
above. We first introduce the following lemma. 
 
Lemma 4.1 [14]: Φg ts x u( , )  is a integral curve 
(starting at Φg x ) of system (1) corresponding to 
control q u g( , ) , that is, 
Φ Φg t t gs x u s x q u g( , ) ( , ( , ))=  if s x ut ( , )  is a 
integral curve (starting at x ) of the system (1) 
corresponding  to control u t( ) . 
 
From all the previous presentation, Theorem 4.1 given 
below follows. 
 
Theorem 4.1: Suppose that the system (1) has general 
symmetry ( , , )G qΦ , Φ is free and proper, q  is 
solvable, and p M M G: / →  admits a cross section 
σ . Hence x M0  ( )∈  is changed into g0, y0  through 
isomorphic decomposition. Further, suppose that the 
system (1) is weakly controllable on σ . Then by means 
of set { } Ggxxgg ∈∈Φ=  , :),( σσ , one can 
obtain that sufficient and necessary conditions of the 
system (1) being globally controllable at point x0  to be 
determined by:  

(a) subsystem (6a) is globally controllable at point y0 ; 

(b) subsystem (6b) is globally controllable at point g0. 
 
PROOF: The proof is given in the accompanied 
supplement due to paper size limitations.  
 
On the grounds of Theorem 4.1, we may decompose 
the original system into two or more subsystems, the  
respective  dimensions of which are decreased 
accordingly under certain conditions. 
 

V. CONCLUSIONS 
In this paper, the original system has been decomposed 
through quotient system and feedback quotient system. 
Each of two ways has its own advantages and 
disadvantages. For example, when it is very difficult for 
one to find an appropriate feedback law, one may 
decompose the original system through quotient system 
such as solvable general symmetry systems. It has been 
shown that general nonlinear control systems 
possessing general symmetries, under a few technical 



conditions, do admit isomorphic decompositions in 
terms of lower dimensional subsystems and feedback 
loops. Furthermore, controllability between the original 
system and the subsystems is equivalent under certain 
conditions. Therefore, this can be exploited when one 
wants to do the analysis of controllability for this kind 
of sym-metric systems. Their special structure can 
provide for a considerable convenience. 
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SUPPLEMENT: Proofs of Theorems 3.1 and 4.1 
 
In the first place, note the commutative diagram in Figure 1 for the considered nonlinear control system (1).  
 

θ g  

M U×                                                                            M U×  
 
                                                                f                                                  f  
                                                                                      T gΦ  

π                  TM                                          TM               π     
 
                                                           π M                                                  π M  
                                                                                       Φg  

M                                                                                    M  
 
    Fig.1. Commutative diagram of the system mappings 
  
 
Proof of Theorem 3.1 
 
σ ( )y  is uniquely determined by y  because Φ is free and proper and p M M G: / →  admits a cross section σ . 
So, p f y t u t∗ ( ( ( )), ' ( ))σ is unique tangent vector of system (6a) at point y M G ( / )∈  and system (6a) is 
uniquely decided. 
 
Let x M0 ∈ , u t( )  be a continuous time function, x t( )  the integral curve of system (1) corresponding to u t( ) . 
And then y t p x t( ) ( ( ))=  is the corresponding integral curve of system (6a) having y p x( ) ( ( ))0 0= . [A] 
According to p M M G: / →  admitting a cross section σ , define a differentiable curve d t M( ) ∈  by 
d t y t( ) ( ( ))= σ . Since p d t p x t( ( )) ( ( ))=  and Φ is free and proper, one can write x t d tg t( ) ( ( ))( )= Φ  for a 
uniquely defined differentiable curve g t G( ) ∈ . 
 
Proof of the above statement [A]: Since system (2.1) has general symmetry ( , , )G qΦ , q  is  solvable, and x t( )  is 
the integral curve of system (1) corresponding to u t( ) , noting that x t( )  and σ ( ( ))p x  have the same orbit, one can 
get  
 

 

!( ) ( ( ), ( ))
( ( ( ( ))), ( ))
( ( ( ( ))), ( ' ( ), ( )))

( )

( )

y t p f x t u t
p f p x t u t
p f p x t q u t g t

g t

g t

  
=
=
=

∗

∗

∗

Φ
Φ

σ
σ

 

that is,           
!( ) ( ) ( ( ( ( ))), ' ( ))

( ) ( ( ( ( ))), ' ( ))
( ( ( ( ))), ' ( ))
( ( ( )), ' ( ))

( )

( )

y t p f p x t u t
p f p x t u t

p f p x t u t
p f y t u t

g t

g t  

=
=
=
=

∗ ∗

∗

∗

∗

Φ
Φ

σ
σ

σ
σ

#
 

 



where u t q u t g t' ( ) ( ( ), ( ))= ∗ . 
 
The goal now is to find a differential equation for g t( ) .   
 
From the chain rule of differentiation, one can have that  
 

f x t u t x d
dt

g t d t T d t T g td t g t( ( ), ( )) ( ( ), ( )) ( ) + ( ).g(t) d(t)= = =! ! !( ) ( )Φ Φ Φ                                (7) 

 
The next step is to rewrite the second term. Note that !( ) ( )g t T Gg t∈ . Let ξ g gT G∈  and denote by 

ξ ξ= ∈−T L T Gg g g e1 ( ) , where Lh  is the left translation operator on G . Then for a point m M∈ , 

 
T T T L T L T T Tg m g g m e g e m g e g m m g e mΦ Φ Φ Φ Φ Φ Φ( ) ( )( )( ) ( )( ) ( )( ) ( )( )( )ξ ξ ξ ξ ξ= = = =# #  (8)  
But, 

T d
dt

t me m m t MΦ Φ( ) ( ) ( )ξ ξ ξ= =
=

exp
0                                                                               (9) 

 
the infinitesimal generator of Φ corresponding to ξ . Hence, 
 
T T m T T L mg m g m g M m g g g g MΦ Φ Φ( ) ( ( )) (( ) ( ))ξ ξ ξ= = −1                                                   (10) 

 
substituting (10) into (7) gives 
 
f x t u t T d t T T L g t d xd t g t d t g t g t g t M( ( ), ( )) !( ) ( !( )) ( ( ))( ) ( ) ( ) ( ) ( ) ( )= + −Φ Φ 1                                 (11) 

 
and q  being solvable gives 
 
f x t u t f x t q u t g t( ( ), ( )) ( ( ), ( ' ( ), ( )))=                                                                                (12) 

 
which satisfies 
u t q u t g t' ( ) ( ( ), ( )).                                      = ∗                                                                (13) 
 
Thus, using (12) in (11) results in  
 
f x t q u t g t T d t T T L g t d td t g t d t g t g t g t M( ( ), ( ' ( ), ( ))) !( ) ( !( )) ( ( ))( ) ( ) ( ) ( ) ( ) ( )= + −Φ Φ 1           (14) 

 
System (1) having general symmetry ( , , )G qΦ  gives  
 
T f m u t f m q u t g tm g gΦ Φ( , ' ( )) ( ( ), ( ' ( ), ( )))= ,                                                                (15) 
 
substituting (15) into (14). Meanwhile changing m into d t( )  gives 
 
T f d t u t T d t T T L g t d td t g t d t g t d t g t g t g t M( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ( ), ( )) !( ) ( !( )) ( ( ))Φ Φ Φ= + −1         (16) 

 
since Φg M M:  →  is a diffeomorphism for all g G∈  and Td t g t( ) ( )Φ  is nonsingular. Hence, 



 
 
f d t u t d t T L g t d tg t g t M( ( ), ' ( )) !( ) ( !( )) ( ( ))( ) ( )= + −1 .                                                          (17) 

 
Let be set 
 
ξ M g t g t Md t T L g t d t( ( )) ( !( )) ( ( ))( ) ( )= −1 .                                                                     (18) 

 
From (17), 
 
ξ M d t f d t u t d t( ( )) ( ( ), ' ( )) ( ).                                     = − !                                          (19) 
 
Applying (9) gives  
 
T t d t f d t u t d te d t MΦ ( ) ( ( )) !ξ ξ= = −( ( )) ( ( ), ' ( )) ( ).                                                (20) 
 
Φ being free and proper implies that Φm G M:  →  is a diffeomorphism onto its range. Hence, (20) can be solved 
uniquely for ξ ( )t  to give  
 
ξ ξ( ) ( ~ )( )t T d te d t M= −Φ 1 ( ( )),                                                                                        (21) 
or  
T L g t T d tg t g t e d t M( ) ( ) ( )!( ) ( ~ )− = −

1
1Φ ξ ( ( )),                                                                    (22) 

 
where 

~ :Φm G G m → ⋅  by g g m" Φ( , ) . Hence, since Lg  is a diffeomorphism for all g ,  
 
!

~ ( ) ~( ( ), '( ) ( )g t T L T f t u t T f y t u te g t e y t( ) ( )( ) [ ( (y( )), ' ( )) ( ))].   (y(t))
-1= −Φσ σ σ                   (23) 

 
Finally, using the fact that d t y t( ) ( ( ))= σ , one gets  
 
!

~ ( ) ~( ( ), '( ) ( )g t T L T f t u t T f y t u te g t e y t( ) ( )( ) [ ( (y( )), ' ( )) ( ))].   (y(t))
-1= −Φσ σ σ                   (24) 

 
substituting (13) and (6a) into (24) gives (6b). 
 
To this end, Theorem 3.1 has been proved completely. 
 
 
Proof of Theorem 4.1  
 
Since system (1) has general symmetry, q  is solvable, and p M M G: / →  admits a cross section σ  , it is 
obvious that system (1) is isomorphic to system (I)  from  Theorem 3.1 . 
 
The necessity of Theorem 4.2: Necessity is apparent and seen quite clearly from its statement and form the above.  
 
Before the proof of sufficiency will be completed, we prove that system (1) is weakly controllable on gσ , 
∀ ∈g G , that is, x R g1 1∈ ( ) ( )σ  and x R x2 1 1∈ ( ) ( )  (∀ ∈x x g1 2, σ  ). [B] 
 



 
Proof of the above statement [B]: For σgx ∈∀ 2 , there exists x" ∈ σ  such that x xg2 = Φ ". Set x xg1 = Φ ( ' )  
for x' ∈ σ . Since x R' ( )( )∈ 1 σ , Hence, x R x' ( ")( )∈ 1 . From Lemma 4.1, one can easily get 
x x R x R xg g1 1 1 2= ∈ =Φ Φ( ' ) ( ") ( )( ) ( ) . For x g2 ∈ σ  is at will, we have x R g1 1∈ ( ) ( )σ . The reasons of  
x R x2 1 1∈ ( ) ( )  (∀ ∈x x g1 2, σ  ) is similar. Hence, system (2.1) is weakly controllable on gσ  . 
    
The sufficiency of Theorem 4.2: Let set z M∈  and z g∉ 0σ   ( if z g∈ 0σ , one can easily have z R x∈ ( ) ( )1 0  
from the conclusion having been proved  just now). According to (a), there exists a integral curve y t( ) (starting at 
y0) of  system (6a) such that y t p z( ) ( )1 = . And then from Lemma 3.1, there exists a integral curve x t( )  (starting 
at x0 ) of the system (1) such that p x t y t p z( ( )) ( ) ( )1 1= = . It is not difficult for one to find that x t( )1  and z  lie 
on the same orbit. Therefore, there exists g G∈  satisfying z x tg= Φ ( ( ))1 . From Lemma 2.4.1, one can get  
z x t R xg g= ∈Φ Φ( ( )) ( ( ))( )1 1 0 . 
 
Let g gg= 0. From (b), there at least exists a point x g R x∗ ∈ ∈  ( ) ( )( )σ 1 0  (note, otherwise, for ∀ ∈x g0σ  can 
not reach x1 (∀ ∈x g1 σ ) since the system (1) is weakly controllable on g0σ  and gσ ). And, then one draws a 
contradictory conclusion that system (6b) can not satisfy g  being reachable for g0). x ∗  can obviously be expressed 
as x x x x xg gg g g

∗ = = = ∈Φ Φ Φ Φ( ' ) ( ' ) ( ( ' )) ( ' )
0 0

 σ . Since system (1) is weakly controllable for x0  on 

g0σ , we easily know x R xg0 1 0
∈ ( ) ( ( ' ))Φ . And then we have Φ Φ Φg g gx R x R x( ) ( ( ( ' ))) ( )( ) ( )0 1 10

∈ = ∗  
from Lemma 4.1. Hence, z x t R xg= ∈Φ ( ( )) ( )( )1 1 0 . Finally, we obtain that the system (1) is globally 
controllable at point x0  according to z M ( )∈  being at will.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


