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Abstract 

In this paper, we studied the vector control, by orientation 
of rotor-flux by using fuzzy regulators for an induction 
machine without speed sensor with adaptation of rotor 
resistance. The speed is estimated by using the adaptive 
method with model of reference (MRAS).  This method 
consists in working out two models one of reference and the 
control adjustable one for the estimate of two components of 
stator flux starting from the measurement of the currents and 
stator voltages. The estimated speed is obtained by cancelling 
the difference between stator-flux of the model of reference 
and those of the adjustable model. Very satisfactory results of 
simulation are presented at the end of this paper. 

1. Introduction 

Due to its simple and robustness structure, the induction 
machine has become an inevitable part of modern industrial drive 
systems. Recently, many modern techniques have been developed 
to command this machine as efficiently as a DC machine. These 
techniques, however, rely on the accuracy of the machine 
parameters which are known to vary under different operating 
conditions. The use of incorrect parameters in controllers can 
result in errors and improper dynamic behaviors. Therefore, 
having the accurate parameters of an induction machine becomes 
essential to accomplish the desired dynamic performance under 
different operating conditions [1-5]. 

The electric drives use more and more the engines the order 
without sensor of the asynchronous machine, requires the design 
of software sensors for the estimate of the physical variables non 
accessible to the measurement or whose measurement requires 
relatively expensive sensors compared to the objective of the 
application considered, such as the number of revolutions and the 
rotor time-constant [3,4]. 

In the control devices, the objectives of estimate and control are 
very significant. Thus, the objectives of estimate of the parameters 
are satisfied through a system tolerating with the faults which 
guarantees the observability of the system in the presence of 
defects of actuators. As for the objectives of command, they are 
generally satisfied by the determination of a law of command 
which ensures certain performances of the closed loop system in 
presence or not of defects. 

These last years, of much research were focused on the 
problems of tolerant order to the faults using of the powerful 
controllers [6,7]. In our case, a solution is obtained thanks to the 
association of the fuzzy regulators with a strategy of indirect rotor-
flux orientation of the three-phase asynchronous machine, without 
speed sensor based on the adaptive method with model of 
reference (MRAS), estimated on real-time of rotor resistance.  
      Method MRAS consists in working out two models one of 
reference and the command  adjustable one for the estimate of  two  
components of stator flux starting from the measurement of the 
currents and stator voltages. 

The estimated speed is obtained by cancelling the difference 
between stator flux of the adjustable model of reference and that, 
while using the theory of hyperstability to obtain the adaptive 
mechanism. Very satisfactory results of simulation are presented at 
the end of this paper. 

2. Mathematical Model of the Machine 
   �
By utilizing the usually adopted assumptions of linear 

magnetics, the steady state and transient behavior of an induction 
motor can be described by the following equations formulated in a 
Park reference frame linked to rotating field. The components of 
the state vector are stator flux, stator currents and the rotor speed 
of the machine. The dynamic model of the machine is obtained by 
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and 
- ids  and iqs , vds and vqs are respectively the stator currents and 

voltages, 
- qrdrqsds ϕϕϕϕ ,,,  are respectively stator flux and rotor flux,  

-
sω  electric pulsation of the stator, 
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- �r mechanical speed of the rotor; rr PΩ=ω , P  a number of 

pairs   of poles: rssr pΩ−= ωω
r

qs

r

i
T
M

ψ
= , srω sliding 

speed 
- rs RR ,  are rspectively stator and rotor resistance 

- Ts and Tr are respectively the time-constant ones of stator and 
rotor;     

s

s
s R

LT = ;  
r

r
r R

LT =

- mrs LLL ,,  are the stator, rotor and mutual inductance, 

-idr and iqr are the rotor currents ; p : Operator of Laplace  
  

3. Strategy of Vector Control Used 

To obtain a decoupled system in order to control the torque via 
stator quadrature current iqs with a similar manner of a DC 
machine, the rotor field orientation is obtained by imposing 
as 0=qrϕ  and rrd ϕϕ = . After arrangement, the equations of 
the machine become: 
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 In equations (3), the components of the two axis d-q are 
coupled; their decoupling is possible by the introduction of two 
new variables:  Vds, Vqs  

                         
dsisR

dt
dsdi

sLdsV += σ

                        
qsisR

dt
qsdi

LqsV += σ                        (4) 

Therefore: 
'dsVdsVdsTV +=                                             

'qsVqsVqsTV +=

With qsds VandV  are the exits of the regulators of currents 
(fuzzy regulators) and qsds VandV ''  terms of decoupling 
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If we consider as: refdrr ϕϕϕ == we obtain the 

following equations: 

sqsrefisLdsVrefr ωσϕϕ −== '      (6)                                                
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4.Estimate Speed by MRAS Technique

To estimate rotor speed, it is judicious to use a reference frame 
related to the stator (
, �) given by the following equations.  This 
transformation does not call upon the position of the rotor which 
we estimate by the model reference method [3],[12].
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While using (8), (7) rewrites itself in the following form   
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Basing on the dynamic model of the asynchronous machine, 
formulated in a stator reference frame, and by using measurements 
of the stator currents and tensions, we build two estimators of 
stator flux.  The first is based on (7) and the second on (9), such as: 
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In the system (10) relating to the stator observations, it is easy 
to notice that it does not depend on the rotor speed àr. This model 
is retained as a reference. In the rotor estimators relating to the 
system (11), we notice the existence of the rotor speed àr.  It is the 
adjustable model. The system (11) can be written in the following 
form:   

                           [ ] [ ][ ] [ ][ ]sss IBAp += ϕϕ ˆˆ                             (12) 
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By using the same inputs (stator currents and voltages) for the 
two models (reference and adjustable), we define the flux 
variations by the expressions 
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These variations are used by the adaptation mechanism to 
generate the estimated speed and to make it converge towards its 
actual value. The adaptation mechanism must be designed in order 
to obtain a fast and a stable time response. The following figure 
represents the estimation technique principle.  

Fig.1.  Structure of the estimator by adaptive method with 
model of reference 

The derivative of the components of error[ ε ] (13) is defined by 
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In the form of state  
  
                         [ ] [ ][ ] [ ]WAp += εε                                      (14) 

According to the general structure of the adaptive mechanism, the 
speed estimation is a function of the error[ ε ]. It is given by:

                        21ˆ PAAp r +=ω                                          (15) 

Functions A1 and A2 , are calculated starting from the inequality 
of Popov , one obtains:   
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where K1 and K2 , are positive constants called profits of 
adaptation.  

5. Estimate of Rotor Resistance 

To estimate resistance of the rotor we used a method which 
makes it possible to calculate the latter in function to flux (real, 
reference) and of the electromagnetic torque (real, reference) [13].   

     To clarify the relation which binds the electromagnetic torque 
and rotor flux to the variations of the parameters of the machine 
we let us proceed as follows:   
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rr RL ,  Values used in the command. 

The actual value of the rotor time-constant:     
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The block of decoupling imposes on the command of the 
inverter the sizes Vds, Vqs and srω . In permanent mode we have:   
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From the equations of Park of the machine we draw the 
components direct and in squaring from rotor flux and the real 
torque of the machine with permanent rate:   
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Therefore the rotor estimate of resistance is given by  following 
relation:  

                        ∗= rrr RKR                                                    (21) 

6.  Controller with Fuzzy Logic and Simulation Results 

The structure of the fuzzy controller used that is proposed by 
Mamdani, because the majority of the developed controllers use 
the  diagram suggested by this last for the systems mono 
input/mono output.  Its basic structure is represented hereafter [8]:  

  

           

Fig.2. Structure interns of a regulator by fuzzy logic 

The variables of entry and exit of the fuzzy controller must be 
clearly defined.  The variables of entry are the error ke  and the 

variation keΔ of the error which are as follows:   
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The standardized values are: 
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The general form of this law of command is given by  

                111 +++ Δ∗+= kkkk UGUU                               (24) 

where eG , eGΔ , uGΔ are a  Coefficient of standardization. 
We selected seven membership functions with overlap, of 

triangular shape and of equal width, are used for each input 
variable, so that a 49-rule base is created. 

   The input membership functions are presented by the following 
scheme: 

- 1 - 0 . 5 0 0 . 5 1

N B  N M  N S  E Z  P S  P M  P B  )( eμ

 e  

Fig.3. input membershipfunction for variable e 

- 1 - 0 . 5 0 0 . 5 1

N B  N M  N S  E Z  P S  P M  P B  

)( eΔμ

eΔ

                  Fig.4. input membershipfunction for variable �e 

For fuzzy PI component output of the controller, again with 
normalized domain, we elected to use seven singleton functions, 
spacing them evenly between ±1; inclusive.  

    The output membership singleton is presented by the following 
scheme: 

  
Fig.5.Output membership singletons for variable UΔ

    
  Output singletons are evenly spaced over the domain. Function 
and singleton definition was largely arbitrary and was not changed 
as the system was tuned. 
    Owing to the membership singleton for output variable, gravity 
center formula is simplified as: 
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Where m is the all number of the rule bases.  

In our case, the gains eG , eGΔ , uGΔ  from standardization are 
chosen arbitrarily, for regulators of the currents and speed.  

The block diagram  without  speed  sensor  of the  induction 
machine  supplied  by PWM  inverter, by  using  fuzzy logic 
regulators  and  rotor-flux  orientation  control  algorithm, is given 
by the figure6.   

Fig.6.  Diagram valve block without speed  sensor of the 
asynchronous machine by using fuzzy logic regulators 
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Figures 7. a, b, c show the dynamic responses of the adjustment 
by orientation of the rotor-flux algorithm of the asynchronous 
machine supplied by PWM inverter. The stator-currents are 
controlled by using fuzzy regulators.These figures represent the 
dynamic responses real speed, estimated, of reference, the couple 
and rotor  flux at a step speed of 100 rd/s followed by an 
application of a  load equal to the nominal couple between 1 and 
1.5 sec, then of an  inversion speed from 2 sec in the following 
cases:   

      - Without variation of the rotor time-constant rT
      - Reduction of 50% of the rotor time-constant rT

Fig.7.a  Simulation of the vector control without speed sensor and 
without variation of  Tr in the induction machine supplied  by 
PWM inverter.   

Fig. 7.b  Simulation of the vector control without speed sensor 
with a reduction 50%  of Tr in the asynchronous machine supplied 
by PWM inverter. 

Fig.7.c  Simulation of the vector control without speed 
sensor with a reduction 50%  of Tr in the asynchronous 
machine supplied by PWM inverter. (low speed) 

7. Conclusion 
    In this paper, we are proposed and analysed a method of a rotor-
flux oriented induction motor drive without speed sensor.  

   The rotor speed is estimated by using the adaptive method with 
model of reference (MRAS) and the stator currents are controlled 
by using fuzzy logic regulators.The results obtained carry out us to 
conclude that the strategy of control used offers good 
performances as well as an insensitivity with respect to the 
disturbances internal  and  external, such as  the  level  speed, the  
load torque, in the presence of variations of the parameters of the  
machine  in  particular the  rotor time-constant, and a speed of 
adaptation compared to the case of a classical PI regulator. This 
demonstrates the robustness of the control algorithm used, even in 
the case of low speed. This association could be used for 
numerical control machine tools where the parametric variations 
are frequent.       
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