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ABSTRACT 
The current trends in development and deployment of 
electromechanical systems have facilitated the unified 
activities in the analysis and design of state-of-the-art 
motion devices, electric motors and digital controllers. This 
paper presents discrete-time on-line  identification of a 
permanent-magnet DC motor in open-loop conditions. 
Studies are carried out by formulating the mathematical 
model using differential equations, and digital 
identification using plant input-output data. Forgetting 
factor dependent recursive least squares method is used to 
estimate the parameters of the motor which match input-
output behaviour of the motor. Discrete-time data for 
parameter identification are obtained experimentally 
carrying out on a permanent-magnet DC motor set-up in 
laboratory. Root-mean-square-error criterion is used to 
check matching of actual output and predicted output. 
Results are presented which show variations in machine 
parameters.  
 

1. INTRODUCTION 
The problem of controlling electromechanical systems is 
very important one in many industrial applications [1]. 
Input-output relation of these systems must be 
researched to improve the steady-state and dynamic 
characteristics such as electric drives and DC motors. 
The main advantages of the DC motors are easy speed or 
position control and wide adjustable range to follow a 
predetermined speed or position trajectory under load [2, 
3, 4]. These have been extensively used in several 
industrial applications [1, 2, 4, 5, 7, 8, 9]. Controller 
parameters of a DC motor have been calculated using 
the linear fixed motor parameters at an operating point. 
However, the fixed parameter controllers may not give 
desired performance under different operating 
conditions. Recently, there has been considerable 
development in adaptive control schemes for the servo 
systems of the DC motors with their industrial 
applications [4]. This has attracted extensive researches 
in the field of control engineering, especially in the areas 
of plant identification and control [1, 8, 10].  
 
The objective of this research is to document our recent 
experimental studies on identification of a DC motor. A 

motor model is first developed that has two inputs and 
single output using ordinary linear differential equations. 
The motor, then, is modelled by linear difference 
equations from digital input-output data obtained 
experimentally. Root-mean-square-error method is used 
to check model matching. The tests are performed in 
open-loop conditions. 
 

II.  MODEL OF THE PLANT 
An important step in designing a control system is a 
proper modelling of the plant to be controlled [8]. An 
exact plant model should produce output responses 
similar to those of the actual plant. The complexity of 
most physical plants, however, makes the development 
of exact models infeasible. Therefore, in order to design 
a controller that is reliable and easy to understand in 
practice, simplified plant models should be obtained 
around operating points [8].  Many plants may be 
modelled as a multimass plant with the masses 
connected with flexible shafts or springs [11]. In many 
cases the modelling is further simplified by considering 
a two-mass plant where the first mass represents the 
motor, the second mass represents the load, and the shaft 
is connected mass or inertia free [12]. The schematic 
diagram of the electromechanical plant, DC motor 
connected to a load, is given in Figure 1. The DC motor 
can be viewed as a two inputs and one output, where the 
motor armature voltage (or current) and external torque 
are the inputs and the velocity (or angular displacement) 
is the output. The linear equations describing the 
electrical components of the motor can be represented as 
[1, 6, 10]: 
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Figure 1.  A schematic diagram of the linear two-mass 
system. 
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where va is the motor armature voltage, Ra and La are the 
armature coil resistance and inductance, ia is the 
armature current, ea is the back electromotive-force 
voltage, Km is the motor constant, Tm is the generated 
motor torque. The linear equations representing the plant 
mechanical components are given as [1, 13]: 
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where Jm  is the motor moment of inertia, Bm is the 
motor viscous friction, Ts  is the transmitted shaft torque, 
JL is the load moment of inertia, BL is the viscous load 
friction, Td is the load torque disturbance, ks is the shaft 
elasticity, and Bs is the inner damping coefficient of the 
shaft. The angles θm, θL, θs are the motor angle, load 
angle, and the difference angle, respectively, while ωm, 
ωL, ωs are the their respective time derivatives; the 
motor angular velocity, the load angular velocity, and 
the difference angular velocity. Block diagram of the 
plant is illustrated in Figure 2 that includes transfer 
functions representations of inherent components. The 
transfer functions are obtained from Eqs. (1-7) as: 
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where  ( )  denotes set of all real 
rational functions), the variable s denotes complex 
frequency, 

)(,,, 4321 sRGGGG ∈ (sR

1-j  , == ωjs

L

,  where ω is the frequency. 
The relation between the output (ω ) and inputs (V ) is 
of interest of the present paper. Fourth-order transfer 
function between ω  and V  occurs. 
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Figure 2. Block diagram of the linear two-mass system. 

 
III. EXPERIMENTAL SET-UP 

Two signal generators are used to supply input voltage 
to the motor in experimental set-up. One of the signal 
generators is to produce constant input voltage and the 
other is used for variable input voltage to provide 
perturbation signal for identification. A computer 

(Pentium II MMX 300 MHz 128 MB RAM) is used to 
generate zero mean independent random noise signal to 
corrupt the output speed signal. The noise signal is 
generated in Matlab, and the signal data file is converted 
into a vaw file that is sent to the motor input using a 
sound card (Crystal PnP Audio soundcard) used as D/A 
converter. The measured input-output data are 
transferred to another computer (A computer (Pentium II 
MMX 300 MHz 128 MB RAM) by a Data Acquisition 
card (ADVANTECH PCL-1800, 130 kHz in speed, 12 
bit high-speed A/D converter with a conversion time of 
2.5 µs.). The output shaft speed is measured from an 
optical sensor (as rev/s) and a tachogenerator (as Volts) 
connected to the motor shaft. The DC motor operates at 
±12 volts armature voltage input with a maximum 
output shaft speed of 2400 rev/min. The motor drives a 
shaft that carries disks which operate various 
transducers, and a tachogenerator. A low pass filter is 
used to filter the output speed signal from high 
frequency noise components. The motor speeds at 
different input armature voltages are measured to obtain 
the tachogenerator characteristics. The results are given 
in Table 1. It has almost a linear characteristics with a 
calculated gain of 2.15 Volt/rad/s. 
 
 
Table 1. DC motor responses for different input 
armature voltages. 

 
Applied input 
(Volt)  (Va) 

Speed 
(rev/s) 

Speed 
(rad/s) 

Tacho output 
(Volt) 

2.0 7 0.7330 1.60 
3.0 11 1.1519 2.52 
4.0 15 1.5708 3.50 
5.0 19 1.9896 4.46 
6.0 24 2.5132 5.42 
7.0 28 2.9320 6.37 
8.0 32 3.3510 7.32 
9.0 37 3.8746 8.32 

10.0 41 4.2935 9.26 
 

IV. PROCESS REACTION METHOD 
Process reaction curve method is one of the widely used 
approaches to predetermine the dynamic behaviour of a 
plant under load or no-load conditions [15]. Some 
dynamical properties of the plant can be obtained using 
the process reaction curve method such as rise time, 
settling time, time constant, time delay. A 7.5 V in 

 



 

magnitude step input armature voltage is applied to the 
motor and the output shaft speed response from the 
tachogenerator is obtained such that the steady-state 
output value is 6.65 V. The rise time is about 0.321 s 
while delay time at the beginning is about 0.008 s. The 
steady-state gain is 0.886 in magnitude, the time delay is 
Td=0.008 s and the time constant is τ=0.15 s.  

 
V.  DIGITAL IDENTIFICATION 

The role of identification consists in describing the 
behaviour of a given plant by a model suitably selected 
within an appropriate class of systems [16,17]. The 
selection criterion exploids the information contained in 
the observation data available over finite time horizon. 
Sample time that is also an important parameter to 
estimate suitable parameter set should be chosen to be 
fast relative to the plant dynamics [18]. Otherwise, 
unsuitable choice of the sample time may cause small 
plant gain, non-minimum phase plant, alising and 
stability problems. 
 
Recursive least squares (RLS) methods that have been 
widely used with several advantages such as easy 
numerical solution and fast parameter convergence gives 
a consistent modelling accuracy over a wide range of 
operating conditions and is the best linear unbiased 
estimate [19,20]. We consider the plant as a discrete-
time transfer function, : )( 1−zG
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where d is the discrete dead time,  is the time shift 
operator,  and  are the plant polynomials 
with real coefficients, : 
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where ,  

and  represent the order of the plant model 
polynomials, respectively, with , R denotes set 
of all real numbers, R[.] denotes set of finite polynomials 
with real coefficients. The relationship between the plant 
output  and the plant input  can be written as 
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where the term e  represents the effects of residual 
errors in modeling the plant, and disturbances that affect 
the plant. Eq. (11) can be rearranged in a compact form: 

)(k
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where the data vector φ  includes the past values of 
input and output, and θ  is the plant parameter vector:  

)(k
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Furthermore, the sequence of errors {  is 
independent uncorrelated noise sequence of variance 

 and . The plant parameters,  and  
are assumed to be unknown and should be estimated. 
The estimation model of the plant is 

})(ke

ia2eσ { } 0)( =teE jb

 

                   )(      
)(
)(

)( 1
1

1
1 −

−

−
−− ∈= zR

zA
zB

zz
e

ed
eG       (15) 

where  
[ ]12

2
1

1
1    ˆ  ...  ˆˆ1)( −−−−− ∈++++= zRzazazazA nn

ne  

[ ]12
2

1
1

1   ˆ ... ˆˆˆ)( −−−−− ∈++++= zRzbzbzbbzB mn
noe  

 
where  and  represent the order of the estimated 
plant model polynomials  and , 
respectively, with n , the symbol ‘∧’ denotes an 
estimated parameter. The parameter estimates vector is 
given 

nn mn
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The estimated model output is 
 
                                  (17) )1(ˆ)()(ˆ −= kkky T θφ
 
The model prediction error,  that is the difference 
between the plant output and the estimated model 
output is a key variable in recursive least squares 
algorithm, is defined as 

)(kε
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The error is used to update the parameter estimate as 
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where the estimator covariance matrix  is updated 
using 
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where the subscript ‘ ’ is the dimension of the identity 
matrix, ,  is the forgetting factor, 

z
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. In general, choosing 0.98<λ<0.995 gives a 
good balance between convergence speed and noise 
susceptibility [19]. In the experiments, the sample 
frequency was chosen to be  that satisfies 
requirement of choice of the sample time [18]. The 
initial values of parameters are taken to be zero 
( a  ). The initial covariance matrix 

diagonal values are taken  with a forgetting 
factor of . The robustness of the covariance 
matrix is achieved using a Bierman’s U-D factorization 
algorithm [18].  Square wave signal is one of the 
commonly used perturbation signals that can be used in 
open-loop identification [18] and adaptive control 
applications [19, 21]. The important point is that 
duration of the square wave should be sufficient to 
excite the slowest plant mode. A square wave periodic 
signal with a frequency of  that is 
superimposed on a 5.0 volts dc signal was applied to the 
plant input. This perturbation signal is sufficient to 
excite the slowest plant mode since the plant has a rise 
of 0.321 s. The input signal (armature voltage) is not 
correlated with noise signals to obtain a bias free 
parameter estimates [14]. The estimated parameters for a 
third-order model are shown in Figure 3 and Figure 4 
that converge after a certain samples. The speed 
convergence depends on the forgetting factor used, here 

. More faster parameter convergence can be 
obtained if value of the forgetting factor is reduced.  
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VI.  MODEL VALIDATION 

After any plant identification process some form of 
model validation should be performed. The method is to 
visually compare the model response to that of the actual 
plant response [22]. Major deficiencies in the model 
structure and parameter estimates would give rise to 
obvious errors in the model output sequence. Root-
mean-square (RMS) error method is one of the 
commonly used approaches for model validation [8]. 
The RMS errors between the actual plant output and 
predicted model output should be compared to find a 
proper model structure. The estimation is performed 
using different model orders for comparison. The RMS 
errors calculated for different estimation model orders 
are 0.02902 for the first order, 0.02342 for the second 
order, 0.01706 for the third order, 0.01680 for the fourth 
order, 0.01646 for the sixth order and 0.01652 for the 
seventh order. A third order model and fourth order 
model appears to be suitable. Further increase in the 
model order brought no significant improvement in the 
performance of predicted models. As compared to first-
order and second-order model, it was found that the third 
order model contributed to the improvement of the 
predicted output. 
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Figure 3. Estimated  parameters in open-loop eB
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Figure 4.  Estimated  parameters in open-loop. eA

 
VII.  CONCLUSIONS 

In this paper, we deal with the problem of modelling and 
identifying of an armature controlled DC motor from 
input-output data taking into account the prior 
information on the dynamical nature of the plant. The 
aim of this research is also to highlight some of the more 
practical implications of plant identification and to 
describe the well-established algorithm (RLS) used to 
perform plant analysis. Process reaction curve method is 
used to ensure the steady-state and transient behaviour 
of the permanent-magnet DC motor coupled to a shaft 
and load.  
 
A real-time implementation of the RLS estimator is 
presented on the DC motor. The open-loop experimental 
tests conducted successfully demonstrate the ease of the 
computer based parameter identification method. The 
measured data obtained experimentally from real-time 
set-up are used instantly by a software program that runs 
in Matlab environment to identify unknown plant 
parameters. A third-order discrete-time linear model is 
shown to be flexible enough to fit the observations well. 
Thus, this model and motor parameter identification 
procedure allows adaptive control designers to develop 
control algorithms explicitly. It also became apparent  

 



 

that the order of the suitable linear model was lower than 
the theoretical one.  
 

RECOMMENDATIONS FOR FUTURE WORK 
The visual comparison of the actual output and predicted 
output responses, as shown in Figure 5, does not show 
some obvious errors due to the non-linearities within the 
plant. The non-linearities appear to manifest themselves 
in the inconsistent peaking of the plant responses. To 
improve the model further would require an approach 
outside the conventional linear techniques capabilities. 
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Figure 5. Actual (solid line) and predicted (dotted line) 
outputs. 
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