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ABSTRACT 
In this paper, the eigenvalue assignment of a SISO 
singularly perturbed problem is considered for a 
minimum phase system. We propose an approach for 
the eigenvalue assignment of a singularly perturbed 
minimum phase system using state feedback which 
leads to a simple eigenvalue reassignment procedure. 
The singularly perturbed system, using singular 
perturbation, can be divided into two subsystems 
independent of each other.  Based on the slow 
subsystem only, we can obtain a feedback gain that 
reassigns the eigenvalues to provide a desired system 
response. 
 
 

I. INTRODUCTION 
Nature offers many situations of systems where more than 
one event occurs at different time scales. For example, an 
electrically driven robot manipulator can have slower 
mechanical dynamics and faster electrical dynamics. In 
such cases, we can divide the systems into two 
subsystems one corresponding to faster dynamics and the 
other corresponding to slower dynamics. Then, controllers 
for each one of them can be designed separately. It is then 
common practice to consider those events occurring at the 
faster scale as being instantaneous with respect to the 
slower ones. These results in a lesser number of variables 
or parameters needed to describe the evolution of the 
system. Several techniques have been developed in 
relation with such events. That is, reduction and 
estimation of the discrepancy between the complete 
system and the systems arising from the reduction. The 
best known methods are the averaging methods, the 
singular perturbation methods, and the aggregation 
methods [1]. Singular perturbation method has been 
widely used in engineering and technology problems.  
Singular perturbation is a mathematical operation which 
can be used on class of linear/nonlinear problems where 
two dynamics operating on different time scales is 
present. In the singular perturbation method both slow and 

fast modes are retained, but analysis and design problems 
are solved in two stages [2]. Applications of singular 
perturbation method are found in physics, chemistry, 
mechanics, industrial process, and engineering [3, 4]. For 
example, Arino et al. [1] studied a model of age-
structured population with two time scales. The first one 
is slow and corresponds to the demographic process. The 
second one is fast and describes the migration process 
between different spatial patches.   
    
In control systems, it is always desired to enhance the 
performance of a given system. Knowing the relation 
between the closed-loop poles and the system 
performance, the system can be designed effectively by 
specifying the locations of these poles [5]. The problem of 
eigenvalue assignment which arises from singular system 
control has been studied in literature extensively [6-8]. 
 
In this paper, we consider the problem of eigenvalue 
assignment of a single input/ single output (SISO) 
singularly perturbed method for a minimum phase system. 
State feedback approach is considered to obtain a simple 
suboptimal control eigenvalue reassignment procedure. 
The suboptimal control is based on the slow dynamics of 
the system.  
 
The organization of the paper is as follows. Section 2 
presents the general model and the problem formulation. 
In section 3, simulation examples are considered. Section 
4 presents our concluding remarks.    
   

II. PROBLEM FORMULATION 
The relationship between the input and output of an Nth 
order linear time-invariant (LTI) system is described by 
the differential equation  
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The system transfer function of Eq. (1) is 
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Rewriting H(s) as a product of terms, 
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then, the roots ci are known as the zeros of H(s), the roots 
di are known as the poles of H(s), and (bM/aN) is a 
constant gain factor. The gain factor (bM/aN) with the pole 
and zero locations in s-plane completely specify H(s).  
A system is stable and causal if all of its poles are in the 
left half of the s-plane. If a system whose transfer function 
H(s) has all of its poles and zeros located in the left half of 
the s-plane, then it is said to be minimum phase [9]. The 
system in Eq. (1) may represent a number of physical 
systems which contain slow and fast modes. This system 
may be represented in the form of a state space model as 
follows. 
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where x is an n-dimensional vector, u is the input signal, y 
is the output vector,  and A and B are constant matrices 
with appropriate dimensions.  For properly assigning the 
eigenvalues as desired, the following state feedback 
control law may be used   
       (5) kxu =
where k is the feedback gain. Substituting Eq. (5) into Eq. 
(4), we obtain  

)(
.

kxBAxx +=  
         (6) xBkA )( +=
Let , then BkAAc +=

      (7) xAx c=
.

We assume that (A, B) is controllable pair.  
 
Now, we consider a singular perturbed linear time-
invariant system [10] 
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where ε  is a small positive scalar, the state x in Eq.(7) is 
formed by the vectors  and . Preliminary to a 
separation of slow and fast designs, system in Eq. (8) is 
approximately decomposed into a slow subsystem with  

 small eigenvalues and a fast subsystem with large 
eigenvalues. Neglecting the fast modes is equivalent to 
assuming that they are infinitely fast; i.e., letting 
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ε  in Eq. 
(8) approaches zero. Doing so, leads to reducing the 
system to: 
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where the bar indicates that 0=ε  for the system in Eq. 
(8). 
Referring to Eq. (9), we see that  
    )( 2121222 uBxAxA +−=                 (10) 
Assuming that A22  is a full rank matrix (nonsingular), then  
         )()( 2121

1
222 uBxAAx +−= −                 (11) 

Substituting equation (11) into equation (9) yields 
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which can be written as 
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where 
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Assuming that the closed loop system in Eq. (7) is 
controllable, the eigenvalues of the matrix Ac can be 
selected arbitrarily using the feedback gain k. That is, the 
n roots of the characteristic equation corresponding to the 
matrix Ac in Eq. (7) 
               0)( =− cAIdet λ                           (15) 
can be arbitrarily assigned where λ is an eigenvalue of the 
matrix Ac. Notice that det denotes the determinant and I 
denotes the identity matrix. To do that, let the feedback 
gain k be given as 
      ][ 21 nkkkk L=                 (16) 
Then the values of ki where i = 1,2,…n can be obtained by 
comparing the characteristic polynomial in Eq. (15) with 



the characteristic polynomial of the desired eigenvalues 
model.         

 
 

III. SIMULATION RESULTS 
Several examples have been studied to confirm the 
theoretical developments. The system considered here is a 
single input/ single output minimum phase system. The 
computations were performed using MATLAB. Some 
results are given here. 
 
Example: The transfer function of the available system is 
given as follows. 

     H(s) =
450 + s 1080 + 2s 380.5 + 3s 41.5 + 4s

6 + s 5 + 2s
        (17) 

 
This system has four poles and two zeros. The poles are 
located at –30, –6, –5, and –0.5. The zeros are located at –
2 and –3. Since the poles and the zeros are in the left half 
of the s-plane, then the system is minimum phase. The 
pole-zero plot is shown in Figure 1. System response to a 
step input is shown in Figure 2. 

-30 -20 -10 0
-5

0

5

Real Axis

Im
ag

 A
xi

s

 
              Figure 1. Pole-zero plot of the original system 
 

0 1 2 3 4 5 6 7 8 9 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time (secs)

A
m

pl
itu

de

 
          Figure 2. System response to a step function 
 

Transforming the system in Eq. (17) to the form of a state 
space model, we obtain the A, B, and C matrices as 
follows. 
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Applying the singular perturbation method using 
Equations (9) through (14) to the system in (17), we 
obtain the reduced order state space model. 
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Reassigning the eigenvalues of this new model in a 
relatively one proper group will enhance the system 
performance. We have assigned the new eigenvalues to be 
– 2.5, –2.8, – 3.2. Notice that the important eigenvalue to 
be reassigned is the most dominant one which is the – 0.5. 
The feedback gain that places the eigenvalues as specified 
is obtained to be [479.6  -85.66  -27.75]. The desired 
eigenvalues are shown in Figure 3. Figure 4 shows the 
new eigenvalues after using the singular perturbation 
technique. It is important to mention that the new 
eigenvalues will not be exactly but close to the specified 
values. This is due to obtaining the feedback gain based 
only on the slow modes and ignoring the fast ones. 
Simulating the system with a step input after applying the 
reduced feedback gain to the original system shows the 
enhancement of the system performance, this is shown in 
Figure 5. The dashed line is the system before reassigning 
the eigenvalues and the sold line is the response after 
reassigning the eigenvalues.  
 

IV. CONCLUSION 
We presented an approach for eigenvalue assignment of a 
minimum phase system using singular perturbation. As it 
can be seen from the example, the new poles of the closed 
loop system will not be exactly but close to the assigned 
values. This is because the reassignment is based on the 
slow modes of the system only. If the eigenvalues were 
assigned by a closed loop feedback gain with the same 
system eigenvalues, the eigenvalues of the closed loop 
system will be a little different, but the response will be 
the same. Hence, even though the eigenvalues are not 
assigned exactly as specified they provide the response as 
if the system does have those assigned eigenvalues.    
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              Figure 3. Desired Eigenvalues 
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              Figure 4. Obtained Eigenvalues 
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Figure 5. Normalized system response to a step function 
after eigenvalue assignment 
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