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Abstract 

This paper presents a Particle Swarm Optimization (PSO) 
based algorithm for optimal flow with generating units 
having non-smooth fuel costs curves while statisfying the 
constraints such as generator capacity limits, power balance, 
line flow limits, bus voltages and transformer tap setting, 
The conventional loed flow and incorporation of the 
proposed method using PSO has been examined and tested 
for standard IEEE 30 bus system. The PSO method is 
demonstrated and compared  with conventional OPF method 
and the intelligence heuristic algorithm such as genetic 
algorithm, evolutionary programming. The superiority of th 
method over other methods has been demonstrated on two 
test cases.  
From simulation results, it has been found that PSO method 
is highly competitve for its better general convergence 
performance. 

Keywords: load flow, optimal power flow, particle swarm 
optimization, non-smooth fuel cost functions, valve point effects.  

1. Introduction 

     In power system operation, the economic dispatch (ED) 
problem is an important optimization problem. Moreover, it has 
complex and nonlinear characteristics with heavy equality and 
inequality constraints. Generally, there are two types of ED 
problem, i.e. static and dynamic. Solving the static ED problem 
is subject to the power balance constraints and generator 
operating limits. For the dynamic ED, it is an extension of the 
static ED problem. The dynamic ED takes the ramp rate limits 
and prohibited operating zone of the generating units into 
consideration. [1] 
     The methods for solving this kind of problem include 
traditional operational research algorithms (such as linear 
programming, quadratic programming, dynamic programming, 
gradient methods and Lagrange relaxation approaches) and 
modern methods (such as simulated annealing and evolutionary 
algorithms). Some of these methods are successful in locating 
the optimal solution, but they are usually slow in convergence 
and require heavy computational cost. Some other methods may 
risk being trapped to a local optimum, which is the problem of 
premature convergence. [2]  
     Recently, intelligence heuristic algorithms, such as genetic 
algorithm, evolutionary programming, and meta-heuristic 
algorithms have been proposed for solving the OPF problem. 
Like other meta-heuristic algorithms, particle swarm 

optimization (PSO) algorithm was developed through 
simulation of a simplified social system such as bird flocking 
and fishing school. PSO is an optimization method based on 
population [3], and it can be used to solve many complex 
optimization problems, which are nonlinear, non-differentiable 
and multi-modal. The most prominent merit of PSO is its fast 
convergence speed. In addition, PSO algorithm can be realized 
simply for less parameters need adjusting. PSO has been applied 
to various power system optimization problems with impressive 
success. The results for a 30-bus system shows that PSO is an 
effective method to solve OPF problem [4]. 
      The main objective of this study is to introduce the use of 
Particle Swarm Optimization (PSO) technique to the subject of 
power system economic load dispatch. In this paper, the PSO 
method has been employed to solve economic dispatch problem 
with a valve point e�ects. A valve point e�ects is the rippling 
e�ects added to the generating unit curve when each steam 
admission valve in a turbine starts to open. More-over, to assure 
accurate results for this model, an additional term representing 
the valve point e�ects should be added to the cost function. The 
addition of the valve point e�ects poses a more challenging task 
to the proposed method since it increases the non-linearity of the 
search space as well as the number of local minima. (See Fig. 1). 

2. Problem Formulation 

2.1. The OPF with quadratic fuel cost functions 

     The optimal power flow problem is concerned with 
optimization of steady state power system performance with 
respect an objective F while subject to numerous constraints. 
For optimal active power dispatch, the objective function F is 
total generation cost as expressed follows: 
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Where: 
N: total number of generation units 
ai, bi, ci: cost coefficients of generating unit. 
Pgi: real power generation of ith unit. i= 1, 2 … to N. 
Subject to: 
Equality constraints as:  
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Inequality constraints as: 
Branch flow limits: 
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Where: nl: number of lines. 
Voltage at load buses 
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Where: nd: number of load buses. 
Generator MVAR 
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2.2. valve-point e�ects 

      The generating units with multi-valve steam, turbines exhibit 
a greater variation in the fuel cost functions. Since the valve 
point results in the ripples as show in fig.1, a cost function 
contains higher order nonlinearity. Therefore, the equation (1) 
should be replaced as the equation (7) to consider the valve 
point effects. Here, the sinusoidal functions are thus added to 
the quadratic cost function as follows. 
       The incremental fuel cost function of the generation units 
with valve-point loading is represented as follows.  
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Where ei and fi are the coefficients of generator i reflecting valve 
point effects. 

Fig. 1. Fuel cost versus power output for 6 valve steam turbine 
unit.

3. Particle Swarm Optimization 

      Particle swarm optimization (PSO) is a population-based 
optimization method first proposed by Kennedy and Eberhart in 
1995, inspired by social behavior of bird flocking or fish 
schooling. The PSO as an optimization tool provides a 
population-based search procedure in which individuals called 
particles change their position (state) with time. In a PSO 
system ,particles fly around in a multidimensional search space .

During flight, each particle adjusts its position according to its 
own experience (This value is called pbest), and according to 
the experience of a neighboring particle 
(This value is called gbest), made use of the best position 
encountered by itself and its neighbor (Fig. 2).

Fig. 2. Concept of a searching point by PSO 
 
This modification can be represented by the concept of velocity. 
Velocity of each agent can be modified by the following 
equation:
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Using the above equation, a certain velocity, which gradually 
gets close to pbest and gbest can be calculated .
The current position (searching point in the solution space) can 
be modified by the following equation:
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Where  
kx  is current searching point , 1+kx  is modified searching 

point , kv is current velocity , 1+kv is modified velocity of agent 
Vpbest is velocity based on pbest ,Vgbest is velocity based on 
gbest, n is number of particles in a group, m is number of 
members in a particle, pbesti is pbest of agent k, gbesti is gbest 
of the group, w  is weight function for velocity of agent k , ci is
weight coefficients for each term .

- c1 and c2  are two positive constants. 
- r1 and r2 are two randomly generated numbers with a 

range of [0,1]. 
- w  is the inertia weight and it is defined as a function 

of iteration index k as follows: 
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Where IterMax. , k  is maximum number of iterations and 
the current number of iterations, respectively. 
To insure uniform velocity through all dimensions, the 
maximum velocity is as. 
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Where N is a chosen number of iterations.
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4. Applied to Optimal Power Flow

         To minimize F is equivalent to getting a minimum fitness 
value in the searching process.  
The particle that has lower cost function should be assigned a 
larger fitness value.  
The objective of OPF has to be changed to the maximization of 
fitness to be used as follows: 
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The PSO-based approach for solving the OPF problem to 
minimize the cost takes the following steps:  

Step 1: randomly generated initial population. 
Step 2: For each particle, the construction operators are applied. 
Step 3: the Newton Raphson routine is applied to each particle. 
Step 4: fitness function evaluation. 
Step 5: compare particles fitness function and determine pbest     
and gbest.  
Step 6: change of particles velocity and position according to 
(11) and (12) respectively.  
Step 7: If the iteration number reaches the maximum limit, go to 
Step 8. Otherwise, set iteration index k = k + 1, and go back to 
Step 2. 
Step 8: Print out the optimal solution to the target problem.  

Fig. 3.  PSO-OPF computational procedure. 

5. Load Flow Calculation 

     Once the reconstruction operators have been applied and the 
control variables values are determined for each particle a load 
flow run is performed. Such flows run allows evaluating the 
branches active power flow, the total losses and voltage 
magnitude this will provide updated voltages angles and total 
transmission losses. All these require a fast and robust load flow 
program with best convergence properties; the developed load 
flow process is upon the full Newton Raphson algorithm. 

6.  Simulation Results and Discussion 

       The proposed PSO algorithm is tested on standard IEEE 30 
bus system. The test system consists of 6 thermal units (Table1), 
24 load buses and 41 transmission lines. 
.
The total system demand is 283.4 MW. 
       The program was written and executed on Pentium 4 having 
2.4 GHZ 1GB DDR RAM. 
The optimal setting of the PSO control parameters are: 
c1=0.5, c2=0.5, numbers of particles is 50 and number of 
generations is 30. 
The Inertia weight was kept between 0.4 and 0.9.

6.1. Case 1: The OPF with quadratic fuel cost functions 

In this case the units cost curves are represented by quadratic 
function. The generator cost coefficients are given in Table A.1. 
The proposed PSO-OPF is applied to standard IEEE 30 bus 
system. 
The obtained results using  PSO-OPF are given in Tables 1- 2. 
     Fig.4. shows the cost convergence of PSO based OPF 
algorithm for various numbers of generations. It was clearly 
shown that there is no rapid change in the fuel cost function 
value after 30 generations. Hence it is clears from the Fig.  That 
the solution is converged to a high quality solution at the early 
iterations (13 iterations). 
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Fig. 4. Convergence characteristic of the IEEE 30 bus system. 

     The minimize cost and power loss obtained by the proposed 
algorithm is less than value reported in [7, 8, 9] using the 
evolutionary copulation techniques, genetic algorithm, Ant 
colony optimization for the some test systems. The results gotten 
including cost and power losses are compare with those 
acquired by others methods and present on tables 1  and 2. 
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Table 1. Results PSO-OPF compared with N.R and QN-OPF 
Methods for the IEEE 30-BUS Electrical Network 

N-R QN-OPF PSO-OPF 

Pg1 [MW] 99.211 170.237 175.6915

Pg2 [MW] 80.00 44.947 48.6390

Pg5 [MW] 50.00 28.903 21.4494

Pg8 [MW] 20.00 17.474 22.7200

Pg11 [MW] 20.00 12.174 12.2302

Pg13 [MW] 20.00 18.468 12.0000

Power Loss [MW] 5.812 8.805 9.3301 

Generation cost 
[$/hr] 

901.918 807.782 802.0136 

     The results show that PSO algorithm gives much better 
results than the classical method. 
The difference in generation cost between these methods and in 
Real power loss clearly shows the advantage of this method. In 
addition, it is important to point out that this simple PSO 
algorithm OPF converge in an acceptable time. For this system 
was converged to highly optimal solutions set after 13 
generations. 

Table 2. Comparison of the PSO-OPF with different 
evolutionary methods of optimization viewpoint cost, losses and 

times of convergence 

IEP
[7] 

SADE_A
LM ]9[

PSO-OPF 

Pg1 [MW] 176.2358 176.1522 175.6915

Pg2 [MW] 49.0093 48.8391 48.6390

Pg5 [MW] 21.5023 21.5144 21.4494

Pg8 [MW] 21.8115 22.1299 22.7200

Pg11 [MW] 12.3387 12.2435 12.2302

Pg13 [MW] 12.0129 12.0000 12.0000

Power Loss 
[MW]

9.5105 9.4791 9.3301 

Generation 
cost [$/hr] 

802.465 802.404 802.0136 

Time  99.013
(minutes) 

15.934
(minutes)

77.672
( Sec ) 
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Fig. 6. Generating operating states. 

Fig.6 shows operating states of generating obtained by PSO 
based OPF algorithm for the minimum solution of the PSO   
algorithm. 

The security constraints are also checked for voltage magnitudes 
and angles. Simulation results give the voltage magnitudes are 
from the minimum of 1.0040 p.u to maximum of 1.06 p.u 
(Fig.5). 

0 5 10 15 20 25 30
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

bus number

Vo
lta

ge
 m

ag
ni

tu
de

 (p
.u

)

Fig. 5. The Voltages after optimization for the IEEE 30 bus 
system. 

6.1. Case 2: The OPF for units with valve-point effects 

In this case, the generator fuel cost curves of generator 
at bus 1 and 2 are represented by quadratic functions with 
rectified sine components using (10). Bus 1 is selected as the 
slack bus of the system to allow more accurate control over units 
with discontinuities in cost curves.  

The generator cost coefficients of those two generators 
are given in Table A.2. The simulation results are shown in 
Table 3 . 

IEP
[7]

SADE_A
LM ]9[

PSO-OPF 

Pg1 [MW]  149.7331  193.2903 199.6336    

Pg2 [MW]  52.0571  52.5735 20.0000   

Pg5 [MW]  23.2008  17.5458 22.2786    

Pg8 [MW]  33.4150  10.0000 29.5909   

Pg11 [MW]  16.5523  10.0000 10.0000   

Pg13 [MW]  16.0875  12.0000 12.0000 

Power Loss 
[MW]

7.6458 12.0096 10.1031 

Generation 
cost [$/hr] 

953.573 944.031 920.9775 

Time  93.583
(minutes) 

16.160
(minutes) 

85.163
(sec)

       Fig.4. shows the outer loop convergence characteristic of  
PSO-OPF with valve effect point. It was clearly shown that 
there is no rapid change in the non-smooth fuel cost functions 
value after 50 generations. Hence it is clears from the Fig.  That 
the solution is converged to a high quality solution at the early 
iterations (20 iterations).
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Fig. 7. Convergence plot with valve point     
       Effect. 

7. Conclusion 

       Particle Swarm Optimization based Optimal Power Flow 
(PSO-OPF) was applied to solve the OPF problems for 
generators with non-smooth fuel cost functions. The 
effectiveness of the proposed algorithm has been tested on the 
IEEE 30-bus system with different fuel cost characteristics. The 
PSO-OPF is successfully and effectively implemented to find 
the global or quasi-global optimum of the OPF problems. 
     The results show that the optimal dispatch solutions 
determined by PSO lead to lower active power loss then that 
found by other methods, which confirms that the PSO is well 
capable of determining the global or near global optimum 
dispatch solution [10].
     Major  drawback of PSO, like in other heuristic optimization 
techniques, is that it lacks somewhat a solid  mathematical 
foundation for analysis to be overcome in the future, 
development of relevant theories. Also, it can have some 
limitations for real-time ED applications considering network 
constraints since the PSO is also a variant of stochastic 
optimization techniques requiring relatively a longer 
computation time than mathematical approaches [10].  
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Table A.1. Generator cost coefficients in case 1 

Real power output 
limit (MW) 

Cost Coefficients 
Bus No. 

Min Max a b c 
1 50 200 0.00375 2.00 0 
2 20 80 0.01750 1.75 0 
5 15 50 0.06250 1.00 0 
8 10 35 0.00834 3.25 0 

11 10 30 0.02500 3.00 0 
13 12 40 0.02500 3.00 0 

Table A.2. Generator cost coefficients in case 2 

Real power 
output

limit (MW)

Cost Coefficients
Bus 
No. 

Min Max a b c e f 
1 50 200 0.00160 2.00 150 50 0.063 
2 20 80 0.01000 2.50 25 40 0.098 
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