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Abstract

Position Emission Tomography (PET) is a medical diagnostic procedure that enables physicians to visually
eveluate the metabolic activity in various organs. A new algorithm based on a modified version of the
expectation mazimization (EM) technique is proposed for solving the PET imaging problem. The algorithm
is parallelized and implemented on AT & T’s PIXEL machine which is a 64 processor, mesh~based parallel
computer.

1. Introduction

Algorithms that are used in image reconstruction fall broadly into one of two categories [1-2]. First category is
based on Fourier methods to reconstruct a function from its line integrals on certain regions. Second category is
based on probabilistic reconstruction methods which take into account the stochastic nature of the problem and
hence yield more accurate results under a broad range of parameters and data. In most general terms image
reconstruction methods take the data that is passed through a general filtering mechanism and reconstruct the
original image. In medical applications the amount of data that should be processed for this purpose is usually
prohibitive for certain methods due to storage and time limitations. In this paper we will describe methods to
help overcome these difficulties using various techniques.

Positron emission tomography (PET) is medical diagnostic procedure [3-4] that enables physicians to
visually evaluate the metabolic activity in various organs. Rather than generating ’static’ pictures as in X-rays,
PET introduces low levels of positron emitting radioactive material in the organ under study, and levels of
absorbtion on various parts of the organ is measured by the PET scanner [5]. The type of biochemical and
the radioactive material used depends on the organ to be studied. It is known that the brain uses glucose as
a primary energy source and therefore glucose "injected’ with radioactive material is used for brain studies, for
the study of heart deoxyglucose and palmitic acid injected with the radioactive material is used. Depending on
the metabolization of the injected material one can generate a ’dynamic’ picture of the organ. For example if
the brain is studied, the patient’s psychosomatic condition at the time of the study will be different than that
at a different time and condition. This hopefully will reveal valuable information on the patient’s condition
and the effect of various treatments (schizophrenia, etc.). There is a broad literature on PET imaging and the
interested reader is referred to [4-5] and the references there.
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2. The Model

A simplified model describing the physics of PET is shown in Figure 1.

N

detectors

object under
study

Figure 1. The simplified model of PET camera.

For description purposes we assume that the organ under investigation is the brain. The glucose injected
with radioactive material goes around the brain and the substance is deposited in various parts proportional to
the uptake mechanism. When the radioactive substance emits a positron, it will annihilate an electron situated
nearby and a pair of x-ray photons will be generated. This pair will travel at opposite directions in a line at a
uniformly distributed angle around the point of annihilation. The '"PET camera’ consists of detectors that are
situated around a circle as shown in Figure 1. The mechanism of the detectors allows for only photon pairs
to be counted. That is, two opposite detectors will register a count only if both of them receive photons at
approximately the same time (within their detection window).

Before going to the data collection mechanism we review some elementary properties of the Poisson
distribution [6]. A nonnegative integer valued random variable x has Poisson distribution with parameter A if

Ak
P(x=k)= e_‘\ﬁ.
The following properties are well known.
1. Elx]=2A
n2. If {x;}? are independent random variables each wrilth a Poisson distribution with parameter A; then
X = Z x; has a Poisson distribution with parameter A = Z)‘i . 5
1

1
3. Let x be a Poisson distributed random variable with parameter A, and let x; be generated by picking

each point of x independently with probability P; (P; — thinning of x) then, x; is a Poisson distributed random
variable with parameter AF;.

4. Suppose x and {P;}} are given and let x; be generated as in 3, then the conditional distribution of
(X1, s Xn) is multinomial with parameter {F;}7.

We partition the emission area by a grid. In this area the emissions are modeled by a two dimensional
Poisson point process, that is, in box b, the emissions are assumed at a rate of Ap. This is shown in Figure 2.
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Ay

Figure 2. The discretization process

This is a slight oversimplification, however choosing a ’large’ number of boxes provides satisfactory
resolution [7].

As described above, a detector pair d can register a pair of x-ray photons if line of sight between them
includes box b. This fact is used to calculate {Py} as shown in Figure 3 for every box b and every detector
pair d.

Figure 8. Calculation of Py

Here P,q denotes the probability that a photon pair emitted by box b will be detected by detector pair
d. The inherent assumptions are that each box is emitting photons that follow a Poisson distribution with
unknown parameter A, independent of its neighbors and that these photons are independently registered (Pyq
thinned) by detector pairs.

The relevance of these simplifying assumptions to the properties of Poisson processes described above
should be clear. There are various ways to improve the model to accommodate the fact that photon pairs do
not follow an exact line of flight, photons are absorbed or deflected in tissue, differential time of flight for a pair
of photons might not be negligible etc. Most of these factors can be accommodated into Pyg’s {7].

3. Estimation Problem

The model used above almost suggests a maxirnum likelihood estimation problem. The unknown Poisson random
variables x; with parameters A, are Pyy-thinned and ng4, the detector counts, are to be used to estimate the
Ap-

Maximum likelihood methods have good theoretical properties and in a Poisson distribution framework
it is especially desirable for its tractability [8]. However, it can be shown that one can equally choose a least
squares estimation procedure resulting in the same estimates. Maximum likelihood methods were first used
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by Gauss in 1821 and have a clearly intuitive argument behind them. Suppose p(z,8) is a density function
(or frequency function) where § is the value of the parameters vector in a parameter space ©. Now, consider
p(z,0) as a function of @ for fixed . This function is called the likelihood function L(#,z). If « is discrete then
L(0,z) is the probability of observing under the parameter §. Thus we can think of L(0,z) as a measure of
how ’likely’ 6 is to have produced . Hence the method of maximum likelihood is to find the value of é(m) if
any, which is 'most likely’ to have produced the data. The problem is to seek a solution to

L(f(z),2) = p(z,8(x)) = max{p(z,0),0 € O}
= max{L(0,z);0 € 6}

In practice, in independent Poisson cases, for obvious reasons log-likelihood equation is used. The

likelihood equation in our case can be easily seen to be

—Z Ao Pog [ZA,,P ba] ™
Ln,)) =][]e ¢ £ o (1)
d
after making the proper identification that z is the fixed data vector n, representing the counts at the detectors,
and 6 is the parameter vector A. In the sequel summations over A’s and n’s are assumed to be over, 1,...,B
and 1,..., D respectively irrespective of what index is used unless otherwise specified. Equation 1 makes use of
the properties of Poisson distribution stated earlier.

Z(n, A) = log L('n, A) = - Zb,d Ao Pog + Zd [nd log Eb Ao Ppg — log nd']

(2)
= - Zb Ap + Ed[nd log Zb A Pog — log nd']

Second equation follows from the fact that ZPM = 1. This follows from the assumption that all photons

d
are detected. However this is not a serious assumption since a standard change of variable and normalization

procedure can be used. Using (2) we can get the first and second derivatives of the log-likelihood equation,

oL _ nded
v 1+Zd: (3)

ZAiPid
i

and
626 'I’LdP«;ded
— = 2 grian e 4
BAiaAj p [E :AkPkd]z ( )
k

It is easy to show, using Equation 4, that £(\,n) ise a concave function of A, hence if a finite maximum exists
it is essentially unique. Hence Kuhn-Tucker theorem, which is a necessary and sufficient condition for A to be
a maximizer of £()\,n), implies that, using Equation 3,

P h
—1+Y <0 i Ay =0 (5)
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Multiplying both sides in the equality of Equation 5 by X # 0, and summing, one gets the identity that the
solution vector must satisfy,
S he=Ym
k ]

In the sequel we shall use an important information theoretic formula, the Kullback-Leibler Information
(KLI) [6]. Let p:= {s;} and v := {v;} be finite discrete probability distributions on a probability space {2, A}.
(It is not necessary that they be probability distributions as long as Z e = Z v;.) Also, let u be absolutely

continuous with respect to v, u < v. Then,
)
KLI:= ; log — 6
Ei i log - (6)

For many of KLI’s properties and applications see [9]. It is easy to see that K LI > 0.

First, using Equation 3 we propose the following update mechanism that will converge to the optimal
value of A. This result is proved in [7,11] however we present a more concise proof.

Proposition :

Let

. ng P
A;c+1 Z kd (7)

E)\zPu

Then, A converges to A and X = A, A B| maximizes the likelihood function provided A2 > 0. The proof
uses the following essential Lemma.

Lemma :

The likelihood function strictly increases in the update rule given by Equation 7 unless A has already
converged, i.e., L(n, \**1) > L(n, \?) with equality iff A+ = )i,

Proof :

Let A := £(A"F1) — £()\") denote the difference of the log-likelihood function. Then using Equation 2,

Z Ai+1Pbd
- i+l by 1 8
;Ab +Zb: +an og ——— ZX » (8)

However it is easy to see that Z A= Z ng for any 4, so that the update rule guarantees that A vector stays

b d
on the simplex

Z A) = constant, A} > 0. (9)
b
Hence, using Equation 7 in Equation 8,

Z Ap [Z 5 o PeelPea
Z m P

A =anlog
d

Z A3 Psa
J
Using concavity of log function and applying Jensen’s inequality

bed Ty
A2 an Z Z g[; *Z o Py
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Now multiplying the numerator and the denominator of the argument of the log function by Al one obtains
using Equation 7 and KLI,
. )\i-i—l
A > ZAZ’H log ;?,
b
> 0iff Aitt £ X} for any b.

Hence the update rule strictly increases the concave log-likelihood function in the bounded simplex described
by Equation 7.
The iteration of Equation 7 implies that each component of A vector is modified multiplicatively as

follows:
i3 p 10
’\k k : ﬁd kd ( )

where fig = ZAiPkd.nd represents the estimated value of the emission counts based on the current emission

intensities. T}I:e procedure calls for the calculation of a modification factor as the expected value of the “error”
ng/fa. Suppose ny/fy is greater than 1, then the contribution of this term is larger than other terms where
that ratio is less than 1. Note that Y4 = Yng and hence both cases always exist unless the algorithm already
converged.

This algorithm is the Expectation Maximization (EM) algorithm [10-11] and it is well known that the
convergence rate of this algorithm in notoriously slow [12]. To achieve much faster convergence rates we propose
the following modification.

1 i n X
Ak_l—l =Ci A Z[—ﬁ—j]M‘Pkd (11)
d

Here C; denotes a constant chosen to satisfy Z /\?’1 = Z A?c and M; > 1 is an integer. The intuition behind

Equation 11 is already given above. If n;/fy i: greater thI:m 1 that we could accentuate the effect of this term
by raising to a power greater than 1. At initial stages of the algorithm this process intuitively will bring us
closer to the solution point and eventually M; can be set to 1 so that the algorithm is guaranteed to converge
to the optimal point.

This idea is similar to the ’cooling schedules’ in simulated annealing [13] and care should be exerciced in
choosing M;. Obviously decreasing M; ’too slow’ can take us too far from the optimal point. In Section 4 we
shall present our implementation of the above algorithm on a mesh architecture AT&T PIXEL Machine.

4. Implementation of the Algorithm

In this section we describe our implementation of the algorithm described above on the AT&T PIXEL Machine.
Before going into details, we briefly discuss the important features of the AT&T PIXEL Machine architecture.

4.1. The AT&T Pixel Machine

The PIXEL Machine is a mesh-based parallel computer. The version we use has 64 processors arranged in
a 8 x 8 mesh. Each processor is connected to its North, East, West, South neighbor with wrap-around on
each column and row; i.e. each column or row is actually a ring of 8 processors. The communication between
processors is synchronous: each processor writes the data to be transferred into a (previously declared) output
buffer and calls a synchronizing primitive that returns after all processors have called it; the transfer of data is
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then performed and the incoming data is put in a (previously declared) input buffer. Before this exchange of
data can take place processors have to declare to which neighbor the data is going and this is done by calling a
direction-setting primitive. Because of hardware-design reasons, it is required that for any global exchange of
data, all transfer between any pair of processors should be performed along the same direction; e.g. all processors
send data to their North neighbor and receive data from the South neighbor. The direction of communication
can be changed by calling the direction-setting procedure passing as parameter the desired direction. However,
this is a timewise expensive operation and its use should be minimized.

Each processor is a DSP 32 processor. It has 36 Kbyte of static memory, where the program and variables
used by the program reside. In addition it has a Video-Memory and a dynamic memory. The dynamic memory
is a bank of 64 K addresses arranged in a 256 by 256 array. Each individual address can store a floating
point number in the DSP format and can be accessed using the row and column reference. The Video-Memory
contains the data relative to the pixels assigned to each processor and is arranged in a 256 by 256 array. In our
implementation we had to content ourselves with 256 by 256 images, with each processor being assigned 1024
points and 128 detectors (that gave 8192 tubes).

4.2. Memory

As we have already mentioned, the main problem we had to face in our implementation was the limited amount
of memory we could use and that had an important effect on the running time of the program. In the ideal
situation, where each processor has enough memory to store all the data it needs, the following data would be
needed by each processor,

P;; : the probability that an emission at point ¢ is detected in tube j. Each processor needs P;; for all points
assigned to it (1024) and all tubes (8192).

m; : The estimated count in tube ¢ after the current iteration. FEach processor has to store m; for all 8192
tubes.

n; : the count of the observed number of emission in tube i. Each processor needs n; for all 8192 tubes.

A; @ the current value of the intensity at point ¢. Each processor needs to store the value \; for all 1024 points
i assigned to it.

It is clear that, given the current memory limitation on AT&T PIXEL Machine, the above cannot be
stored in the local memory of the processors. We choose not to store the P;; and to recompute them each time
we need it. However, one should be careful as the computation of a P;; is a very time consuming computation
and, moreover, for most of 7 and j this value is 0.

4.3. Computation of F;;

The computation of the P;; will turn out to be the most time consuming computation in our program and we
have paid extra attention to reducing it. The following observation is crucial to reduce the cost of computing
the P;;. Let us fix a point ¢ and a detector s;. Now, there are very few other detectors sy (in our example no
more than 6, with an average of around 3) for which the probability that an emission at location ¢ be detected
in the tube defined by the detectors 81, s2 in nonzero. Actually, it is straightforward to compute these detectors
in the following way. Comsider P; and P,, the two endpoints of detector s;, and Q! , (respectively ng) be
the intersection of the lines passing through the point i and P; (respectively P;) with the circle of detectors.
Then, by denoting by L[s;] and H]s;] the sectors of Q;, and Q2 , the detectors s» are those that are between
L[s1] and H[s1].

We have thus reduced the computation of 8192 P;;’s per point to around 3 x 128 with a saving factor of 25.
The algorithm above also fits naturally in the computation we have to perform. In fact, if we denote P;; by
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P(i,s1,s2) where the j—th tube is defined by detectors s; and sz, we obtain that the main computation of
the algorithm

Ak — /\k N ZZP(’L 81,52) [31,82] (12)

81 82 [S 82]
128 H[si1)
Ak — /\k Z Z P(Z 31,32) [[21,222]] (13)

81=1 gp= ‘_‘L[81]

4.4. Computation of the Estimated Count

Our algorithm, being essentially a modified EM algorithm, can be seen as consisting of two different phases:
the Expectation and the Maximization phase. In the Expectation phase the number of emissions detected by a
tube is estimated, by its expected value, by assuming that the current solution is the right one. This is the only
phase of our algorithm in which inter-processor communication is required. By denoting the estimate for the

j-th tube by m;, we have m; = Z)\iPij which can be written as m; = Z Z)\ ;P;; where I, denotes the
i p=1licl,
set of points assigned to processor p. This gives a direct way of computing these estimates. Each processor p

computes its contribution \;P;; to m; and the contributions will be summed over all processors to give m;.
4] i) 4]

i€l
The summation needed to compute m; can be performed in the following way. First, each processor passes to

its NORTH neighbor his contribution while receiving the contribution of its SOUTH neighbor. The processor
sums these two contribution and passes NORTH what he received from SOUTH. In this way, after 8 iteration
each processor has the sum of the contributions of all the processors in its column. After that, the same process
is repeated over the rows so that the final value m; can be computed by each processor. The procedure we have
just described involves just 2 changes of direction in the communication. To avoid having to do 2 changes of
direction for each of the 8192 m;’s, we let each processor compute its contribution to all the m;’s before starting
summing the contributions of all the processors. This way, we only need to change direction of communication
twice in order to compute all the m;’s. This can be further reduced to just one change per each iteration, with
the first iteration having 2 changes.

4.5. An Example

In this section we give the result on the example described below. For comparison purposes we chose a fixed
exponent of 3 in the MEM. The results of the EM algorithm for each iteration are shown in Figure 4, top to
bottom and left to right. The first picture is the target image in each of the figures. Figure 5 shows the same
experiment with the MEM. It is clear that convergence to the target image is much faster in MEM. We have
experimented with various exponent structures for the MEM and the results are very encouraging and will be

reported elsewhere together with applications in other fields.
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5. Conclusion

The EM algorithm is used in many branches of applied probability [7,10,14,15], and MEM that we describe
similarly can be used in those areas where the convergence rate is very crucial. The basic EM algorithm is a
special case of broad range of algorithms described in [16]. Although the conditions of convergence of MEM
are difficult to obtain in general, 'pessimistic’ exponent structures can be used to guarantee convergence.For
example, an exponent that converges very rapidly to 1 is guaranteed to converge, however the full benefits of
the MEM will not be seen in this case. Further experimentation is necessary for MEM. Case by case fine tuning
of MEM will be very beneficial in applications and is recommended.
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