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ABSTRACT 
Synthesis algorithm for mixed lumped and distributed 
element networks is presented. The algorithm is based 
on transfer scattering matrix factorization The mixed 
structure is composed of ladder lumped-elements 
connected with commensurate transmission lines (Unit 
elements, UEs). Reflection function expression in two-
variable is utilized in the algorithm. First, the type of 
the element that will be extracted is determined. After 
obtaining the value of the element, it is extracted, and 
the reflection function of the remaining network is 
obtained by using transfer scattering matrix 
factorization method. Algorithm is given for low-pass 
structures (similar algorithms have been prepared for 
high-pass, band-pass and band-stop structures). An 
example is included to illustrate the implementation of 
the proposed algorithm. 
 

I. INTRODUCTION 
An analytic treatment of the design problem with mixed 
lumped and distributed elements requires the 
characterization of the mixed-element structures using 
transcendental or multivariable functions. The first 
approach deals with non rational single variable 
transcendental functions and is based on the classical 
study of cascaded noncommensurate transmission lines by 
Kinarivala [1]. First results on the synthesis of a 
transcendental driving-point impedance function as a 
cascade of lumped, lossless, two-ports and commensurate 
transmission lines were given by Riederer and Weinberg 
[2]. The other approach to describe mixed lumped-
distributed two-ports is based on the transformation of 
Richards, )tanh( τλ p=  which converts the 
transcendental functions of a distributed network into 
rational functions [3]. The attempts to generalize this 
approach to mixed lumped-distributed networks led to the 
multivariable synthesis procedures, where the Richards 
variable λ  is used for distributed-elements and the 
original frequency variable p  for lumped-elements. In 
this way, all the network functions could be written as 
rational functions of two or more complex variables. After 
the pioneering work of Ozaki and Kasami [4] on the 

multivariable positive real functions, the problem of filter 
design with mixed lumped and distributed elements is 
attempted to be solved by many researcher especially 
using the latter multivariable approach. In this context, 
although there have been valuable contributions for the 
characterization of some restricted classes of mixed-
element structures, a complete theory for the 
approximation and synthesis problems of mixed lumped 
and distributed networks is still not available. Thus, the 
problem is quite challenging from a theoretical as well as 
the practical point of view. 
In the following section, the characterization of two-
variable networks is introduced. Subsequently, after 
giving the synthesis algorithm, an example is presented, to 
illustrate the utilization of the proposed algorithm. 
 

II. CHARACTERIZATION OF TWO-VARIABLE 
NETWORKS 

 

Lossless

Two-Port
RS11(p, )

 
Figure 1. Lossless two-port with input reflectance 
function ),(11 λpS . 
 
Let { }2,1,; =lkSkl  designate the scattering parameters of 
a lossless two-port like the one depicted in Fig. 1. For a 
mixed lumped and distributed element, reciprocal, lossless 
two-port, the scattering parameters may be expressed in 
Belevitch form as follows [5-8] 
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In (1a), ωσ jp +=  is the usual complex frequency 
variable associated with lumped-elements, and 



Ω+Σ= jλ  is the conventional Richards variable 
associated with equal length transmission lines or so 
called commensurate transmission lines ( τλ ptanh= , 
where τ  is the commensurate delay of the distributed 
elements). 

),( λpg  is th
p nn )( λ+  degree scattering Hurwitz 

polynomial with real coefficients such that 
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The partial degrees of two-variable ),( λpg  polynomial 
are defined as the highest power of a variable, whose 
coefficient is nonzero, i.e. ),(deg λpgn pp = , 

),(deg λλλ pgn = . 

Similarly, ),( λph  is also a th
p nn )( λ+  degree 

polynomial with real coefficients such that 
( ) PλλP T

h
T

h
Tph Λ=Λ=λ,  

where 
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),( λpf  is a real polynomial which includes all the 

transmission zeros of the two-port network. General form 
of the polynomial ),( λpf  is given by 

mj
ni

fpfpf
ji

ji ,...,2,1
,...,2,1

;)()(),(
, =

=
=∏ λλ   (1d) 

where n  is the number of transmission zeros of the 
lumped-element subsection ( pnn ≤ ), the difference 

( nn p − ) is the number of transmission zeros at infinity of 
the lumped-element subsection, m  is the number of 
transmission zeros of the distributed-element subsection 
( λnm ≤ ), the difference ( mn −λ ) is the number of 
transmission zeros at infinity of the distributed-element 
subsection, )( pfi  and )(λjf  define the transmission 
zeros of lumped and distributed subsections, respectively. 
Transmission zeros can be located anywhere in p - and 
λ -planes. From (1d), it can be immediately deduced that 
the transmission zeros of each subsection have to arise in 
multiplication form. In other words, it can be assumed 

that ),( λpf  of the entire mixed-element structure is in 
product separable form as 

)()(),( λλ DL fpfpf = ,    (1e) 
where )( pf L  and )(λDf  are the polynomials 
constructed on the transmission zeros of the lumped- and 
distributed-element subsections, respectively. 
In the lossless two-port network, if one only considers the 
real frequency transmission zeros formed with lumped-
elements, then on the imaginary axis ωj , )( pf L  will be 
either an even or an odd polynomial in p . Furthermore, 
due to cascade connection of commensurate transmission 
lines, )(λDf  will have the following form 

.)1()( 2/2 λλλ n
Df −=     (1f) 

A practical form of ),( λpf  can be obtained by 
disregarding the finite imaginary axis zeros except those 
at DC as follows, 

2/2 )1(),( λλλ nkppf −=     (1g) 
where k  designate the total number of transmission zeros 
at DC. 
Since the network is considered as a lossless two-port 
terminated in a resistance, then energy conversation 
requires that 

IpSpS T =−− ),(),( λλ ,    (1h) 
where I  is the identity matrix. The open form of (1h) is 
given as 

).,(),(),(),(),(),( λλλλλλ −−+−−=−− pfpfphphpgpg
      (1i) 
In the following section, the synthesis algorithm, based on 
scattering transfer matrix factorization [9], for low-pass 
mixed-element two-port networks is given. The 
fundamental properties of this mixed-element structure 
can be found in [6] and [10]. 
 

III. MIXED-ELEMENT NETWORK SYNTHESIS 
ALGORITHM 

In this section, synthesis algorithm for low-pass mixed-
element structures is explained step by step. Similar 
algorithms have been prepared for high-pass, band-pass 
and band-stop structures, but because of space limitations, 
they are not given here. 
 
3.1. Low-Pass Ladders Connected with Unit Elements 
The coefficient matrices of the polynomials ),( λph  and 

),( λpg , and polynomial ),( λpf  describing the mixed-
element low-pass structure are as follows, 
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Step 1: Compute 1
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Step 2:  
1α  2α  First component Next component 

+1 -1 UE Series inductor (L) 

-1 +1 UE Parallel capacitor 
(C) 

+1 +1 Series inductor (L) UE 

-1 -1 Parallel capacitor 
(C) UE 

Step 3: a) If the component that will be extracted is a UE, 

then characteristic impedance is λ
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polynomials ),(,),( )()( λλ phpg RNRN  and ),()( λpf RN  
of the remaining network can be computed as 

),()(),()(),( )()()( λλλλλ pggphhpg UEUERN −+−−= , 

),()(),()(),( )()()( λλλλλ pghphgph UEUERN −= , 
2/)1(2)( )1(),( −−= λλλ nRN pf . 

b) If the component that will be extracted is a lumped 
element (L or C), then the element value is 
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is an inductor, the polynomials )(),( )()( phpg LL  and 

)()( pf L  are 1
2

)()( += pEVpg L , pEVph L

2
)()( = , 

1)()( =pf L . The polynomials ),(,),( )()( λλ phpg RNRN  

and ),()( λpf RN  of the remaining network can be 
computed as 

),()(),()(),( )()()( λλλ pgpgphphpg LLRN −+−−= , 

),()(),()(),( )()()( λλλ pgphphpgph LLRN −= , 
2/2)( )1(),( λλλ nRN pf −= . If the lumped element is a 

capacitor, the polynomials )(),( )()( phpg CC  and 

)()( pf C  are 1
2

)()( += pEVpg C , pEVph C

2
)()( −= , 

1)()( =pf C . The polynomials ),(,),( )()( λλ phpg RNRN  

and ),()( λpf RN  of the remaining network can be 
computed as 

),()(),()(),( )()()( λλλ pgpgphphpg CCRN −+−−= , 

),()(),()(),( )()()( λλλ pgphphpgph CCRN −= , 
2/2)( )1(),( λλλ nRN pf −= . 

Step 4: Set new ),( λph , ),( λpg  and ),( λpf  two-

variable polynomials as ),(),( )( λλ phph RN= , 

),(),( )( λλ pgpg RN= , ),(),( )( λλ pfpf RN= , and go to 
Step 1. 
 

IV. EXAMPLE 
The coefficient matrices of the polynomials ),( λph  and 

),( λpg , and polynomial ),( λpf  describing the mixed-
element low-pass structure are given as, 
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Step 2: 11 +=α  and 12 +=α , so the first component that 
will be extracted is an inductor, and the element value is 
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61 =L . The polynomials )(),( )()( phpg LL  and )()( pf L  

of the inductor are 131
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)()( == , 1)()( =pf L . The polynomial 

),()( λpf RN  and coefficient matrices hΛ  and gΛ  of the 

remaining network are )1(),( 2)( λλ −=pf RN , 
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If the same algorithm is used, the extracted element values 
and the remaining network coefficient matrices and 
polynomial ),()( λpf RN  are as follows, 
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and the termination resistor 1=R . The obtained network 
is given in Fig. 2. 
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Figure 2. Synthesized low-pass mixed-element network, 
normalized element values: ,3,4,6 121 === CLL  

1,5,2 21 === RZZ . 
 

V. CONCLUSION 
The unavoidable connections between lumped-elements 
destroy the performance of the lumped-element networks 
at high frequencies. But these connection lines can be 
used as circuit components. In this case, the circuits must 
be composed of mixed lumped and distributed elements. 

But a complete theory for the approximation and synthesis 
problems of mixed-element networks is still not available. 
So in this paper, synthesis of practically important class of 
mixed-element networks, namely ladder lumped-elements 
connected with UEs, is examined. The synthesis of 
mixed-element networks may be realized by using single 
variable boundary polynomials, namely the polynomials 

)0,(),0,(),0,( pfpgph  for lumped-element section, and 
),0(),,0(),,0( λλλ fgh  for distributed-element section. 

In this case, synthesis is carried out for lumped and 
distributed sections separately. Then, the components are 
mixed, to construct the mixed-element network. But in the 
proposed algorithms, the synthesis of mixed-element 
network is carried out by using the two-variable reflection 
function of the mixed-element network, and components 
are extracted according to the connection order in the 
mixed-structure. Synthesis algorithm, based on transfer 
scattering matrix factorization, for low-pass networks is 
given. The implementation of the proposed algorithm is 
utilized by the given example. As a result, a simple to use 
mixed-element network synthesis algorithm is presented, 
which is necessary for the applications using this 
important class of mixed-element networks, e.g. design of 
filters, broadband matching networks and amplifiers. 
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