
SUPERVISORY CONTROL OF A PNEUMATIC SYSTEM USING PLC

İ. Tolga Hasdemir Salman Kurtulan Leyla Gören
 hasdemir@elk.itu.edu.tr kurtulan@elk.itu.edu.tr goren@elk.itu.edu.tr

Istanbul Technical University, Faculty of Electrical & Electronics Engineering, Control Systems Division

34390, Maslak, Istanbul, Turkey

Key words: Discrete Event Systems, Supervisory Control, PLC

ABSTRACT

In this study we present a supervisory control system and
implement it on a pneumatic system controlled by a PLC.
We introduce a step-by-step implementation procedure
including a realization methodology of finite state machines
by PLCs. A hierarchical control structure is proposed and
implemented. The pneumatic system control problem
presented in this study is a typical logical Discrete Event
System (DES) control problem, therefore it is easy to
generalise the methodology for most of the DES control
problems.

I. INTRODUCTION
An important portion of today’s manufacturing systems
can be classified as event driven systems or discrete event
systems (DESs). Although it is possible to analyse and
control this class of industrial systems formally, general
methods applied in the industry are intuitive rather than
being formal. For small sized DES control problems,
intuitive methods may yield practical solutions, but as the
controlled system gets larger and more complex, formal
methods need to be applied.

The supervisory control theory (SCT) introduced by
Ramadge and Wonham [1] provides a powerful
framework for control of discrete event systems. The
theory enables synthesis of closed loop control systems
for DESs by making some assumptions on the system that
is to be controlled, and on the supervisor that is to control
the system. Although the SCT has received a wide
acceptance in academy and some applications of SCT
have been reported in the literature [2-4, 6] it has not been
accepted in the industry yet. This is mainly due to the
difficulties arising in physical implementation of SCT
[4,5].

Programmable Logic Controllers (PLCs) have been used
in industrial applications for more than 25 years and today
most of the automated manufacturing systems use PLCs
as control units. Therefore the potential physical platform
to realise a supervisor in industry is the PLC.

Finite state automata are used for representing the plant
model and the supervisor in SCT. Implementation of SCT
necessitates an appropriate method for developing a PLC
program corresponding to the automaton that represents
the theoretical supervisor. Therefore implementing the
SCT is a matter of developing an appropriate PLC
program, which will force the PLC behave as an
automaton. The methods for developing PLC codes for
this purpose and the problems that may arise in doing so
are discussed in [4-6].

One of the main difficulties arising in SCT
implementations is state-space explosion. System models
are generally built as combination of subsystems and the
number of states of the global system grows exponentially
with the number of subsystems. Computational
complexity caused by large number of states (may be
more than 1020) can make it impossible to design and
implement a supervisor for a given DES control problem.
Therefore some formal and informal techniques are used
to reduce computational complexity either by reducing
sizes of the automata or using different control structures
comprising more than one supervisor. Informal techniques
generally depend on the designer’s experience and
preferences such as ignoring some of the details (i.e. some
of the states of the physical system) that are not necessary
to appear for the given control problem [4]. A formal
method called Local Modular Control reduces
computational complexity and provides significant
memory savings by using multiple supervisors and local
models of the plant [6].

In this study, implementation of SCT on an educational
pneumatic manufacturing system is presented. A
hierarchical control structure comprising three supervisors
for two subsystems of the pneumatic system have been
proposed. Two of the supervisors control their respective
subsystems while the remaining supervisor manages the
execution order of these two supervisors. It is shown that
the language corresponding to the desired behaviour of
the overall system is controllable. Implementation of the
supervisors is provided by a PLC.

The organization of the paper is as follows. A brief
introduction of DESs, SCT is given in Section 2. The
pneumatic system is introduced and modelled in Section
3. Section 4 discusses the control structure and explains
synthesis and implementation of the supervisors.

II. PRELIMINARIES
Discrete event systems evolve on spontaneously occurring
events. Let E be finite set of the events that drive the
system. The set of all finite concatenations of events in E
is denoted as E*. An element in this set is called a string.
The number of events gives the length of the string. The
string with zero length is denoted as ε. A subset L ⊆ E* is
called a language over E. For a string s∈ E*, s denotes
the prefixes of s and is defined as

)}sts(Et:Es{s p
**

p =∈∃∈= . Extending this definition
to languages we get prefix closure of a language L
denoted as L . A language L satisfying the condition

LL = is said to be prefix closed [7].

An automaton, denoted by G, is a six tuple
 where X is the set of states, E is

the finite set of events. f: X x E → X is the partial
transition function on its domain. Γ: X→2

)X,x,,f,E,X(G m0Γ=

E is the active
event function. Γ(x) is the set defined for every state of G
and represents the feasible events of x. x0 is the initial
state and Xm ⊆ X is the set of marked states representing a
completion of a given task or operation. The language
generated by G is denoted by L(G) and defined as
L(G)={s ∈ E* : f(x0,s) is defined}. The language marked
by G is denoted by Lm(G) and defined as Lm(G)={s ∈ E* :
f(x0,s) ∈ Xm} [7]. Product and parallel composition
operations are defined for expressing two forms of joint
behaviour of multiple automata that operate concurrently.
Product of two automata, say G1 and G2 is denoted as G1
X G2 and represents the synchronous behaviour of the
two automata. Thus, an event occurs in the resulting
automata if and if it occurs in both automata. The
generated and marked languages of the resulting
automaton will be L(G1 X G2) = L(G1)∩L(G2) and
Lm(G1 X G2) = Lm(G1) ∩ Lm(G2), respectively. Parallel
composition of automata G1 and G2 is denoted as G1||G2.
In the resulting automaton common events occur
synchronously, while the other events occur
asynchronously. Therefore, if the event sets E1 and E2 of
the automata are equal then parallel composition of G1
and G2 will be equivalent to the product of G1 and G2.

Automata are generally represented by state diagrams.
Figure 1 shows a simple automaton with two states. State
0 with a directed line pointing it is the initial state. State 1
with double circle is the marked state of the automaton.
Directed lines (transitions) represent transition functions
of the automaton. Labels of the transitions correspond to
events. The events associated with all the transitions from
a state give the active event set of that state.

0 1

a

1

b

c

Figure 1. A simple automaton.

The supervisory control theory (SCT) uses formal
languages to model the uncontrolled behaviour of discrete
event systems and specifications for the controlled
behaviour. The objective is to restrict the behaviour of the
system to a desired behaviour, which is represented by the
specifications. This is done by disabling some events to
prevent some of undesired strings from occurring in the
system. The decision of which event to be disabled is
made by another simultaneously executing system, called
the supervisor. The supervisor is also represented by an
automaton. The active event set associated with a state of
the supervisor gives the events that are allowed to occur in
the corresponding state of the controlled system.

In SCT events are divided into two classes as controllable
events and uncontrollable events. The set of controllable
events is denoted by Ec, while Euc represents the
uncontrollable event set. The supervisor has no effect on
uncontrollable events, that is the supervisor cannot
prevent an event of Euc from happening.

The SCT assumes that strings of events are generated by
the system. When the supervisor disables a controllable
event this means that this event cannot be executed by the
controlled system. However, when real world problems
are considered, this assumption causes implementation
difficulties since systems of real world do not generate
events rather they generate responses to given commands.
For this reason, an input-output perspective was proposed
in [2]. In this perspective the supervisor not only prevents
controllable events from occurring but also generates
commands that drive the system.

Our interpretation is somewhat different from above
mentioned input-output perspective. In the
implementation stage, although the commands are
generated by the device that functions as the supervisor,
these commands are interpreted as controllable events
generated by the system. This means that the supervisor
simply allows these controllable events to occur in this
interpretation. Considering the commands generated by
the controlling device as a part of the controlled system
makes it possible to use SCT in its original form.

In SCT the existence of a supervisor is guaranteed if the
desired language satisfies a condition. This condition is
called as the controllability condition and defined as

KMEK uc ⊆I where K is the language that will be
generated under the control of the supervisor and is
the language generated by the uncontrolled system [7].

M

THE PNEUMATIC SYSTEM
The pneumatic system (MAP 205) shown in Figure 2 is a
flexible automation minicell built for educational
purposes comprising pneumatic manipulators and a PLC
(Siemens S7-200). It demonstrates the assembly of a
rotary mechanism comprising a base, bearing, shaft and a
cover. Assembly of rotary mechanism is carried out by
means of four manipulators. Each manipulator performs
its specific task in the assembly process. The tasks that the
manipulators perform are base feeding, mounting of the
bearing, insertion of the shaft, positioning of the cover,
respectively.

Figure 2. The pneumatic system (MAP 205)

Although there are four manipulators in the system, in this
study two of the manipulators were used to realise a part
of total manufacturing process. The tasks that are
performed in this study are mounting of the bearing and
insertion of the shaft. It is straightforward to extend the
design procedure to the complete case.

Automaton Models of Manipulators

 We will call the two manipulators as Manipulator 1
(Mn1) and Manipulator 2 (Mn2), respectively. Our first
objective is to build the model of the system, that is the
uncontrolled behaviour of the two manipulators. We will
focus on each manipulator separately. Mn1 carries out the
process necessary for the assembly of the shaft by placing
it inside the previously inserted bearing. There are two
cylinders and a gripping arm driven by pneumatic valves
on Mn1. One of the cylinders makes a rotary movement
of 900 while the other one makes a vertical movement.
We will represent the vertical cylinder, rotary cylinder
and the gripping arm of Mn1 by the letters G, H, and I
respectively. The process of placing the shaft inside the
bearing can be described as follows. With the command
G_ds, cylinder G lowers down to position “d” and arm I
grips the shaft, which is initially deposited in a seat. Then
G rises up to the position “u” and H starts to change its
position from “0” to “1” immediately after H_1s
command. Upon the occurrence of H_1 event signing that
H is in position 1, G is lowered and then the shaft is
released to place it in the bearing. In order to take Mn1 to
its initial position, the commands used for inserting the

shaft are followed in reverse order. The automata
representing the behaviour of each part of Manipulator 1
is shown in Figure 3. The set of events generated by
sensors and used as inputs to the PLC forms the
uncontrollable events. The set of events that drive the
pneumatic valves forms the controllable events.
Controllable events (commands) are denoted by a
subscript s. Subscript s is also used for the states reached
by these controllable events. States with subscript s
indicate that a specific command has been given but not
completed yet. For example, after the occurrence of the
event G_ds automaton G enters the state ds and stays there
until G_d occurs meaning that cylinder G is indeed in
position “d”.

u

ds

d

G_ds
G_d

us G_usG_u

G

XG={u,d,us,ds}; EG={G_d, G_u, G_ds, G_us}
EucG={G_d, G_u}

0

1s

1

H_1s
H_1

0s H_0sH_0

H

XH={0,1,1s,0s}; EG={H_0, H_1, H_0s, H_1s}
EucH={H_0, H_1}

r g

I_gs

I_rs

XI={r,g}; EI={I_gs, I_rs}; EucI=φ

I

Figure 3. Models of the components of Manipulator 1.

The task of Mn2 is to pick up and place the cover onto the
base after the shaft is inserted into the bearing. This
manipulator consists of a vertical cylinder, a horizontal
cylinder and a vacuum, which is used for holding the
cover. All of these components are driven by solenoid
valves. We will use the letters J, K, and V to denote
horizontal cylinder, vertical cylinder, and vacuum
respectively. The models for the components of Mn2 are
built in a similar manner to that of Mn1 and are given in
Figure 4.

b

fs

f

J_fs
J_f

bs J_bsJ_b

J

XJ={b, f, bs, fs}; EJ={J_f, J_b, J_fs, J_bs}
EucJ={J_f, J_b}

u

ds

d

K_ds
K_d

us K_usK_u

K

XK={u, d, us, ds}; EK={K_d, K_u, K_ds, K_us}
EucK={K_d, K_u}

0

1s

1

V_ons
V_on

0s V_offsV_off

V

XK={0, 1, 0s, 1s}; EK={V_on, V_off, V_ons, V_offs}
EucK={V_on, V_off}

Figure 4. Models of the components of Manipulator 2.

As a next step in model building we will obtain a
complete model for each of the manipulators. Parallel
composition of the three automata in Figure 3 gives a
complete model of Mn1. Instead of making a regular
parallel composition operation resulting in a 32 state
automaton, we use the automaton with 24 states as a

0,u,r

0,ds,r

0,d,r

G_ds G_d

0,ds,r
G_usG_u

0,d,g

I_gs

I_rs

0,us,g
G_us

0,u,g

G_u

0,ds,g
G_dsG_d

1,u,r

1,ds,r

1,d,r

G_ds G_d

1,us,r
G_usG_u

1,d,g

I_gs

I_rs

1,us,g
G_us

1,u,g

G_u

1,ds,g
G_dsG_d

1s,u,r 0s,u,r

H_1s

H_1H_0s

H_0

1s,u,r 0s,u,r

H_0s

H_1s

H_0

1s,d,g 0s,d,g 1s,d,g 0s,d,g

H_1s
H_0

H_1
H_0s

H_1s
H_0

H_0sH_1

b,u,0

b,ds,
0

b,d,0

K_ds K_d

b,us,
0

K_usK_u

b,d,1

b,us,1
K_us

b,u,1

K_u

b,ds,1
K_dsK_d

fs,u,0 bs,u,
0

J_fs
J_b

fs,d,0 bs,d,
0 fs,d,1 bs,d,1 fs,u,1 bs,u,1

b,d,
1s

b,d,
0s

V_ons V_on

V_off V_offs

f,u,0

f,ds,0

f,d,0

K_ds
K_d

f,us,0
K_usK_u

f,d,1

f,us,1
K_us

f,u,1

K_u

f,ds,1
K_dsK_d

f,d,
1s

f,d,0s

V_ons
V_on

V_off V_offs

J_f
J_bs

J_fs

J_f

J_b

J_bs

J_fs

J_f

J_b

J_bs

J_fs

J_b

J_f J_bs

Mn2Mn1

Figure 5. Automaton models of Manipulator 1 and Manipulator2.

0,u,r 0,ds,r 0,d,g 0,us,g 0,u,g

1s,d,g

1,u,g1,ds,g1,d,g1,d,r1,us,r1,u,r

0s,u,r

G_ds G_d I_gs
G_us G_u

H_1s

H_1

G_dsG_dI_rsG_usG_u

H_0s

H_0

0,d,r b,u,0 b,ds,
0

b,d,
1s

b,d,1 b,us,
1 b,u,1

f,ds,1f,d,1f,d,0sf,d,0f,us,0f,us,0

bs,u,
0

K_ds K_d V_ons K_us K_u

J_fs

K_dK_usK_u

J_bs

J_b

b,d,0
V_on

fs,u,1

f,u,1

J_f

K_dsV_offsV_off

S1 S2
I_gs G_us H_1s

G_dsI_rsG_usH_0s

V_ons
K_us J_fs

K_dsV_offsK_us
J_bs

Figure 6. Supervisors for Manipulator 1 and Manipulator2.

model of Mn1 by omitting some of the states that are
infeasible in the model. In a similar manner, an automaton
model of Mn2 is obtained with 28 states instead of 64
states that would result from a regular parallel
composition operation.

Automata Representing The Specifications

Specifications are defined as the desired behaviour, which
is a subset of the system behaviour. Automata can also be
used for representing the specifications. In our problem,
the operation order of manipulators’ components
necessary for the realization of manufacturing task
determines the specifications. If the output events of S1
and S2 are neglected in Figure 6, these automata represent
the desired behaviour of Manipulator 1 and Manipulator 2
respectively.

IV. CONTROL SYSTEM

Structure and Design of the Control System

If a central supervisor were to be built we would have to
deal with a complete model of the system, which would
have 24 x 28 = 672 states. Instead of building one
supervisor, we design three supervisors to have a
hierarchical control structure shown in Figure 7. Two of
the supervisors (S1 and S2) control their subsystems,
namely Manipulator 1 and Manipulator 2, while a third
supervisor (S) in the higher level of control structure is
used to control these two controlled subsystems to give
the overall desired behaviour. In order to analyse
controllability of the overall control system, firstly we
have to check the controllability of the sub control

systems Sc1 and Sc2. Then we will analyse the
controllability of the control system comprising the
supervisor S and systems Sc1 and Sc2.

It can be shown that the language K1=L(S1) is
controllable by applying controllability condition

1K1ME1K 1uc ⊆I

ucHucG1uc EEE U=

ucKucJ2uc EEE U=

, where M1=L(Mn1) and
. The language K2=L(S1) is also

controllable with respect to M2=L(Mn2) and
. Therefore it is guaranteed that

once Manipulator 1, which is under control of S1 is
started with the event G_d

ucIEU

ucVEU

s, it will generate the event H_0
after following a certain string of events determined by
S1. Also, when Manipulator 2, which is controlled by S2
is started with the event K_ds, it will eventually generate
the event J_b. This discussion leads to an automaton
representation of the overall system behaviour.

Figure 8 shows the supervisor that can be used to achieve
the desired behaviour. Omitting the outputs of states 0
and 2, Figure 8 also shows the automaton, say G,
describing the overall system behaviour with
uncontrollable events STR, H_0, and J_b.

Mn1

S1

Mn2

S2

S

Sc1 Sc2

S1(s1) S2(s2)s1 s2

S(s) s

Figure 7. The hierarchical control structure.

S
(G)

0 2

G_ds

3
H_0

4

K_ds

J_b

1
STR G_ds K_ds

Figure 8. Automaton corresponding to the supervisor of
the overall system. (Also represents the complete system).

Now we have an automaton G with 5 states only, which
represents the complete pneumatic system controlled by
two “sub supervisors”. The controllability analysis of the
complete system is reduced to the controllability analysis
of the language generated by S. Since S and G are
equivalent, the language corresponding to the desired
behaviour of the system is the same as the language
generated by the system. This means that there is no
restriction on the system behaviour and that the language
corresponding to the desired behaviour is controllable.

 (a) (b)

Note that, this hierarchical structure can be generalised
for any number of subsystems. This structure is also
convenient for additional sub systems to an existing
hierarchical control system.

Realization

In the realization stage, we try to force the PLC behave as
the supervisors that we designed. In order to fulfil this
task, two criteria should be met. One of the criteria is to
provide synchronization of the supervisors with the
process and the other is generation of the output events
appearing on some of the states of the automaton
representations of the supervisors. As mentioned before,
although these output events are generated depending
upon the states of the supervisor automata, we will treat
them as the controllable events generated by the system
and allowed by the supervisors to occur. This
interpretation allows us to analyse and design real world
DES control problems without violating the assumptions
in SCT.

We will explain the realization methodology on a part of
the supervisor shown in Figure 8 using Ladder Diagram
(LD) programming technique. We will use memory bits
to represent states and events. Falling and rising edges of
sensor signals will be used to meet the assumption of
momentary events in DES theory. Also we will use two
memory bits for each of the state, one for current PLC
scan cycle, and the other for the next cycle. This solves
the problem named as “avalanche effect” defined in [5].

As an example, the part of PLC program shown in Figure
9a, corresponds to transition to state 0 of automaton in
Figure 8. We use qi for the current cycle and Qi for the
next cycle of state i. The output events of G_ds and K_ds
are realised by setting PLC’s digital outputs Q0.7 and
Q1.4 to logic 1 level, respectively. The program part
shown in Figure 9b is used for generating these events.
Note that, reset of the PLC outputs are also considered as
events, and should be taken into account when writing
PLC program parts for event generation.

 (S)
Q1

(R)
Q0

q0 STR_P

(S)
Q1

(R)
Q4

q4 J_b_P

(S)
Q 2

(R)
Q 1

q1 G_d s_P

(S)P
Q1

(S)P
Q3

Q0.7

Q1.4

Figure 9. PLC program parts realising transition of state 1
of the supervisor (a), and output events (commands) (b).

The signal labels ending with letter P in Figure 9a
indicates rising and falling edges of the signals obtained
in preceding rows of the PLC program.

V. CONCLUSION
In this paper, we have presented an application of
supervisory control theory to a pneumatic manufacturing
system. We have proposed a hierarchical control
structure, which makes it possible to design and analyse
supervisors simultaneously without causing the problem
of state space explosion. Also an interpretation of
supervisory control theory, which enables handling real
world DES control problems without violating
assumptions of the theory has been introduced in this
study. Finally, a realization methodology of SCT using
PLC has been given.

REFERENCES

1. P. J. Ramadge, W. M. Wonham, Supervisory control
of a class of discrete event processes, SIAM Journal
of Control and Optimization, Vol. 25, No 1,206-230,
1987

2. S. Balemi, G. J. Hoffman, P. Gyugyi, H. Wong-Toi,
and G.F. Franklin, Supervisory control of a rapid
thermal multiprocessor, IEEE Transactions on
Automatic Control, Vol. 38, No. 7, 1040-1059, 1993

3. B. A. Brandin, The real-time supervisory control of
an experimental manufacturing cell, IEEE
Transactions on Robotics and Automation, Vol. 12,
No. 1,1-14, 1996

4. R. J. Leduc, PLC implementation of a DES
supervisor for a manufacturing testbed: An
implementation Perspective. Master’s thesis,
Department of Computer and Electrical Engineering,
University of Toronto, Toronto, Canada, 1996

5. M. Fabian, A. Hellgren, PLC-based implementation
of supervisory control for discrete event systems,
Proceedings on the 37th IEEE conference on Decision
& Control, Tampa, Florida, USA, 1998.

6. M. H de Queiroz, J. E. R. Cury, Synthesis and
implementation of local modular supervisory control
for a manufacturing cell, Proceedings of WODES
2002, 2002

7. C. G. Cassandras, S. Lafortune, Introduction to
discrete event systems, Kluver Academic Publishers,
1999

	Istanbul Technical University, Faculty of Electrical & Electronics Engineering, Control Systems Division
	34390, Maslak, Istanbul, Turkey
	ABSTRACT
	I. INTRODUCTION
	II. PRELIMINARIES
	THE PNEUMATIC SYSTEM
	
	
	
	
	
	
	
	Automaton Models of Manipulators

	The task of Mn2 is to pick up and place the cover onto the base after the shaft is inserted into the bearing. This manipulator consists of a vertical cylinder, a horizontal cylinder and a vacuum, which is used for holding the cover. All of these componen
	Figure 4. Models of the components of Manipulator 2.

	REFERENCES

