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ABSTRACT 
 
In this study we present a supervisory control system and 
implement it on a pneumatic system controlled by a PLC. 
We introduce a step-by-step implementation procedure 
including a realization methodology of finite state machines 
by PLCs. A hierarchical control structure is proposed and 
implemented. The pneumatic system control problem 
presented in this study is a typical logical Discrete Event 
System (DES) control problem, therefore it is easy to 
generalise the methodology for most of the DES control 
problems.  
 

I. INTRODUCTION 
An important portion of today’s manufacturing systems 
can be classified as event driven systems or discrete event 
systems (DESs). Although it is possible to analyse and 
control this class of industrial systems formally, general 
methods applied in the industry are intuitive rather than 
being formal. For small sized DES control problems, 
intuitive methods may yield practical solutions, but as the 
controlled system gets larger and more complex, formal 
methods need to be applied.  
 
The supervisory control theory (SCT) introduced by 
Ramadge and Wonham [1] provides a powerful 
framework for control of discrete event systems. The 
theory enables synthesis of closed loop control systems 
for DESs by making some assumptions on the system that 
is to be controlled, and on the supervisor that is to control 
the system. Although the SCT has received a wide 
acceptance in academy and some applications of SCT 
have been reported in the literature [2-4, 6] it has not been 
accepted in the industry yet. This is mainly due to the 
difficulties arising in physical implementation of SCT 
[4,5].  
 
Programmable Logic Controllers (PLCs) have been used 
in industrial applications for more than 25 years and today 
most of the automated manufacturing systems use PLCs 
as control units. Therefore the potential physical platform 
to realise a supervisor in industry is the PLC.  

 

Finite state automata are used for representing the plant 
model and the supervisor in SCT. Implementation of SCT 
necessitates an appropriate method for developing a PLC 
program corresponding to the automaton that represents 
the theoretical supervisor. Therefore implementing the 
SCT is a matter of developing an appropriate PLC 
program, which will force the PLC behave as an 
automaton. The methods for developing PLC codes for 
this purpose and the problems that may arise in doing so 
are discussed in [4-6].  

 
One of the main difficulties arising in SCT 
implementations is state-space explosion. System models 
are generally built as combination of subsystems and the 
number of states of the global system grows exponentially 
with the number of subsystems. Computational 
complexity caused by large number of states (may be 
more than 1020) can make it impossible to design and 
implement a supervisor for a given DES control problem. 
Therefore some formal and informal techniques are used 
to reduce computational complexity either by reducing 
sizes of the automata or using different control structures 
comprising more than one supervisor. Informal techniques 
generally depend on the designer’s experience and 
preferences such as ignoring some of the details (i.e. some 
of the states of the physical system) that are not necessary 
to appear for the given control problem [4]. A formal 
method called Local Modular Control reduces 
computational complexity and provides significant  
memory savings by using multiple supervisors and local 
models of the plant [6]. 

 
In this study, implementation of SCT on an educational 
pneumatic manufacturing system is presented. A 
hierarchical control structure comprising three supervisors 
for two subsystems of the pneumatic system have been 
proposed. Two of the supervisors control their respective 
subsystems while the remaining supervisor manages the 
execution order of these two supervisors. It is shown that 
the language corresponding to the desired behaviour of 
the overall system is controllable. Implementation of the 
supervisors is provided by a PLC. 



The organization of the paper is as follows. A brief 
introduction of  DESs, SCT is given in Section 2. The 
pneumatic system is introduced and modelled in Section 
3. Section 4 discusses the control structure and explains 
synthesis and implementation of the supervisors.  
 

II. PRELIMINARIES 
Discrete event systems evolve on spontaneously occurring 
events. Let E be finite set of the events that drive the 
system. The set of all finite concatenations of events in E 
is denoted as E*. An element in this set is called a string. 
The number of events gives the length of the string. The 
string with zero length is denoted as ε. A subset L ⊆ E* is 
called a language over E.  For a string s∈ E*, s  denotes 
the prefixes of s and is defined as 

)}sts(Et:Es{s p
**

p =∈∃∈= . Extending this definition 
to languages we get prefix closure of a language L 
denoted as L . A language L satisfying the condition 

LL =  is said to be prefix closed [7]. 

An automaton, denoted by G, is a six tuple 
 where X is the set of states, E is 

the finite set of events. f: X x E → X is the partial 
transition function on its domain. Γ: X→2

)X,x,,f,E,X(G m0Γ=

E is the active 
event function. Γ(x) is the set defined for every state of G 
and represents the feasible events of  x. x0 is the initial 
state and Xm ⊆ X is the set of marked states representing a 
completion of a given task or operation. The language 
generated by G is denoted by L(G) and defined as 
L(G)={s ∈ E* : f(x0,s) is defined}. The language marked 
by G is denoted by Lm(G) and defined as Lm(G)={s ∈ E* : 
f(x0,s) ∈ Xm} [7]. Product and parallel composition 
operations are defined for expressing two forms of joint 
behaviour of multiple automata that operate concurrently. 
Product of two automata, say G1 and G2 is denoted as G1 
X G2 and represents the synchronous behaviour of the 
two automata. Thus, an event occurs in the resulting 
automata if and if it occurs in both automata. The 
generated and marked languages of the resulting 
automaton will be L(G1 X G2) = L(G1)∩L(G2) and 
Lm(G1 X G2) = Lm(G1) ∩ Lm(G2), respectively. Parallel 
composition of automata G1 and G2 is denoted as G1||G2. 
In the resulting automaton common events occur 
synchronously, while the other events occur 
asynchronously. Therefore, if the event sets E1 and E2 of 
the automata are equal then parallel composition of G1 
and G2 will be equivalent to the product of G1 and G2. 

Automata are generally represented by state diagrams. 
Figure 1 shows a simple automaton with two states. State 
0 with a directed line pointing it is the initial state. State 1 
with double circle is the marked state of the automaton. 
Directed lines (transitions) represent transition functions 
of the automaton. Labels of the transitions correspond to 
events. The events associated with all the transitions from 
a state give the active event set of that state. 
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Figure 1. A simple automaton. 

The supervisory control theory (SCT) uses formal 
languages to model the uncontrolled behaviour of discrete 
event systems and specifications for the controlled 
behaviour. The objective is to restrict the behaviour of the 
system to a desired behaviour, which is represented by the 
specifications. This is done by disabling some events to 
prevent some of undesired strings from occurring in the 
system. The decision of which event to be disabled is 
made by another simultaneously executing system, called 
the supervisor. The supervisor is also represented by an 
automaton. The active event set associated with a state of 
the supervisor gives the events that are allowed to occur in 
the corresponding state of the controlled system.  

In SCT events are divided into two classes as controllable 
events and uncontrollable events. The set of controllable 
events is denoted by Ec, while Euc represents the 
uncontrollable event set. The supervisor has no effect on 
uncontrollable events, that is the supervisor cannot 
prevent an event of Euc from happening. 

The SCT assumes that strings of events are generated by 
the system. When the supervisor disables a controllable 
event this means that this event cannot be executed by the 
controlled system. However, when real world problems 
are considered, this assumption causes implementation 
difficulties since systems of real world do not generate 
events rather they generate responses to given commands. 
For this reason, an input-output perspective was proposed 
in [2]. In this perspective the supervisor not only prevents 
controllable events from occurring but also generates 
commands that drive the system. 

Our interpretation is somewhat different from above 
mentioned input-output perspective. In the 
implementation stage, although the commands are 
generated by the device that functions as the supervisor, 
these commands are interpreted as controllable events 
generated by the system. This means that the supervisor 
simply allows these controllable events to occur in this 
interpretation.  Considering the commands generated by 
the controlling device as a part of the controlled system 
makes it possible to use SCT in its original form. 

In SCT the existence of a supervisor is guaranteed if the 
desired language satisfies a condition. This condition is 
called as the controllability condition and defined as 

KMEK uc ⊆I  where K is the language that will be 
generated under the control of the supervisor and  is 
the language generated by the uncontrolled system [7].  

M



THE PNEUMATIC SYSTEM 
The pneumatic system (MAP 205) shown in Figure 2 is a 
flexible automation minicell built for educational 
purposes comprising pneumatic manipulators and a PLC 
(Siemens S7-200). It demonstrates the assembly of a 
rotary mechanism comprising a base, bearing, shaft and a 
cover. Assembly of rotary mechanism is carried out by 
means of four manipulators. Each manipulator performs 
its specific task in the assembly process. The tasks that the 
manipulators perform are base feeding, mounting of the 
bearing, insertion of the shaft, positioning of the cover, 
respectively. 

Figure 2. The pneumatic system (MAP 205) 
 

Although there are four manipulators in the system, in this 
study two of the manipulators were used to realise a part 
of total manufacturing process. The tasks that are 
performed in this study are mounting of the bearing and 
insertion of the shaft. It is straightforward to extend the 
design procedure to the complete case.  
 

Automaton Models of Manipulators 

 We will call the two manipulators as Manipulator 1 
(Mn1) and Manipulator 2 (Mn2), respectively. Our first 
objective is to build the model of the system, that is the 
uncontrolled behaviour of the two manipulators. We will 
focus on each manipulator separately. Mn1 carries out the 
process necessary for the assembly of the shaft by placing 
it inside the previously inserted bearing.  There are two 
cylinders and a gripping arm driven by pneumatic valves 
on Mn1. One of the cylinders makes a rotary movement 
of 900 while the other one makes a vertical movement. 
We will represent the vertical cylinder, rotary cylinder 
and the gripping arm of Mn1 by the letters G, H, and I 
respectively. The process of placing the shaft inside the 
bearing can be described as follows. With the command 
G_ds, cylinder G lowers down to position “d” and arm I 
grips the shaft, which is initially deposited in a seat. Then 
G rises up to the position “u” and H starts to change its 
position from “0” to “1” immediately after H_1s 
command.  Upon the occurrence of H_1 event signing that 
H is in position 1, G is lowered and then the shaft is 
released to place it in the bearing. In order to take Mn1 to 
its initial position, the commands used for inserting the 

shaft are followed in reverse order. The automata 
representing the behaviour of each part of Manipulator 1 
is shown in Figure 3. The set of events generated by 
sensors and used as inputs to the PLC forms the 
uncontrollable events. The set of events that drive the 
pneumatic valves forms the controllable events. 
Controllable events (commands) are denoted by a 
subscript s. Subscript s is also used for the states reached 
by these controllable events. States with subscript s 
indicate that a specific command has been given but not 
completed yet. For example, after the occurrence of the 
event G_ds automaton G enters the state ds and stays there 
until G_d occurs meaning that cylinder G is indeed in 
position “d”. 
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Figure 3. Models of the components of Manipulator 1. 

The task of Mn2 is to pick up and place the cover onto the 
base after the shaft is inserted into the bearing. This 
manipulator consists of a vertical cylinder, a horizontal 
cylinder and a vacuum, which is used for holding the 
cover. All of these components are driven by solenoid 
valves. We will use the letters J, K, and V to denote 
horizontal cylinder, vertical cylinder, and vacuum 
respectively. The models for the components of Mn2 are 
built in a similar manner to that of Mn1 and are given in 
Figure 4. 
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Figure 4. Models of the components of Manipulator 2. 

As a next step in model building we will obtain a 
complete model for each of the manipulators. Parallel 
composition of the three automata in Figure 3 gives a 
complete model of Mn1. Instead of making a regular 
parallel composition operation resulting in a 32 state 
automaton, we use the automaton with 24 states as a 
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Figure 5. Automaton models of Manipulator 1 and Manipulator2. 
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Figure 6. Supervisors for Manipulator 1 and Manipulator2.
  
model of Mn1 by omitting some of the states that are 
infeasible in the model. In a similar manner, an automaton 
model of Mn2 is obtained with 28 states instead of 64 
states that would result from a regular parallel 
composition operation. 
 

Automata Representing The Specifications 

Specifications are defined as the desired behaviour, which 
is a subset of the system behaviour. Automata can also be 
used for representing the specifications. In our problem, 
the operation order of manipulators’ components 
necessary for the realization of manufacturing task 
determines the specifications. If the output events of S1 
and S2 are neglected in Figure 6, these automata represent 
the desired behaviour of Manipulator 1 and Manipulator 2 
respectively. 
 

IV. CONTROL SYSTEM 
 

Structure and Design of the Control System 

If a central supervisor were to be built we would have to 
deal with a complete model of the system, which would 
have 24 x 28 = 672 states. Instead of building one 
supervisor, we design three supervisors to have a 
hierarchical control structure shown in Figure 7. Two of 
the supervisors (S1 and S2) control their subsystems, 
namely Manipulator 1 and Manipulator 2, while a third 
supervisor (S) in the higher level of control structure is 
used to control these two controlled subsystems to give 
the overall desired behaviour. In order to analyse 
controllability of the overall control system, firstly we 
have to check the controllability of the sub control 

systems Sc1 and Sc2. Then we will analyse the 
controllability of the control system comprising the 
supervisor S and systems Sc1 and Sc2. 

It can be shown that the language K1=L(S1) is 
controllable by applying controllability condition 

1K1ME1K 1uc ⊆I

ucHucG1uc EEE U=

ucKucJ2uc EEE U=

, where M1=L(Mn1) and 
. The language K2=L(S1) is also 

controllable with respect to M2=L(Mn2) and 
. Therefore it is guaranteed that 

once Manipulator 1, which is under control of S1 is 
started with the event G_d

ucIEU

ucVEU

s, it will generate the event H_0 
after following a certain string of events determined by 
S1. Also, when Manipulator 2, which is controlled by S2 
is started with the event K_ds, it will eventually generate 
the event J_b. This discussion leads to an automaton 
representation of the overall system behaviour. 

Figure 8 shows the supervisor that can be used to achieve 
the desired behaviour. Omitting the outputs of states 0 
and 2, Figure 8 also shows the automaton, say G, 
describing the overall system behaviour with 
uncontrollable events STR, H_0, and J_b.  

Mn1

S1

Mn2

S2

S

Sc1 Sc2

S1(s1) S2(s2)s1 s2

S(s) s

 
Figure 7. The hierarchical control structure. 
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Figure 8. Automaton corresponding to the supervisor of 
the overall system. (Also represents the complete system). 

Now we have an automaton G with 5 states only, which 
represents the complete pneumatic system controlled by      
two “sub supervisors”. The controllability analysis of the 
complete system is reduced to the controllability analysis 
of the language generated by S. Since S and G are 
equivalent, the language corresponding to the desired 
behaviour of the system is the same as the language 
generated by the system. This means that there is no 
restriction on the system behaviour and that the language 
corresponding to the desired behaviour is controllable.  

                         (a)                                        (b) 

Note that, this hierarchical structure can be generalised 
for any number of subsystems. This structure is also 
convenient for additional sub systems to an existing 
hierarchical control system.    

Realization 

In the realization stage, we try to force the PLC behave as 
the supervisors that we designed. In order to fulfil this 
task, two criteria should be met. One of the criteria is to 
provide synchronization of the supervisors with the 
process and the other is generation of the output events 
appearing on some of the states of the automaton 
representations of the supervisors. As mentioned before, 
although these output events are generated depending 
upon the states of the supervisor automata, we will treat 
them as the controllable events generated by the system 
and allowed by the supervisors to occur. This 
interpretation allows us to analyse and design real world 
DES control problems without violating the assumptions 
in SCT. 

We will explain the realization methodology on a part of 
the supervisor shown in Figure 8 using Ladder Diagram 
(LD) programming technique. We will use memory bits 
to represent states and events. Falling and rising edges of 
sensor signals will be used to meet the assumption of 
momentary events in DES theory. Also we will use two 
memory bits for each of the state, one for current PLC 
scan cycle, and the other for the next cycle. This solves 
the problem named as “avalanche effect” defined in [5]. 

As an example, the part of PLC program shown in Figure 
9a, corresponds to transition to state 0 of automaton in 
Figure 8. We use qi for the current cycle and Qi for the 
next cycle of state i. The output events of G_ds and K_ds 
are realised by setting PLC’s digital outputs Q0.7 and 
Q1.4 to logic 1 level, respectively. The program part 
shown in Figure 9b is used for generating these events. 
Note that, reset of the PLC outputs are also considered as 
events, and should be taken into account when writing 
PLC program parts for event generation. 
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Figure 9. PLC program parts realising transition of state 1 
of the supervisor (a), and output events (commands) (b). 

The signal labels ending with letter P in Figure 9a 
indicates rising and falling edges of the signals obtained 
in preceding rows of the PLC program. 

V. CONCLUSION 
In this paper, we have presented an application of 
supervisory control theory to a pneumatic manufacturing 
system. We have proposed a hierarchical control 
structure, which makes it possible to design and analyse 
supervisors simultaneously without causing the problem 
of state space explosion. Also an interpretation of 
supervisory control theory, which enables handling real 
world DES control problems without violating 
assumptions of the theory has been introduced in this 
study. Finally, a realization methodology of SCT using 
PLC has been given.  
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