
Evaluation of Parametric and Non-Parametric Methods for  
Power Curve Modelling of Wind Turbines  

Abstract 
The growing applications of wind power systems and 
their essential roles in renewable energy production 
require development of accurate methods for their 
parameter identification such as the wind turbine power 
curves. This paper evaluates and compares the 
parametric and non-parametric approaches for power 
curve modelling of wind turbine which is a very 
complicated and nonlinear function of different 
mechanical, electrical and metrological input 
parameters. In fact achieving a complete model that can 
accurately describe the turbine output characteristic is 
very difficult.  However, there are different modelling 
techniques that could lead to have a better estimation of 
turbine generation model. In this paper, four different 
algorithms for modelling the output power of wind 
turbines in form of two strategies using two case studies 
will be developed and the results of different models will 
be compared. 

1. INTRODUCTION 
Global interest in replacing fossil fuel energy sources 

with clean and renewable energy sources have introduced 
new areas of research and development for more efficient 
implementation of renewable energy in the traditional 
energy market and make them competitive in comparison to 
the fossil energy resources. 
Wind energy is one of the most economic sources of 
renewable energies with very complicated and nonlinear 
characteristics. One of the most important issues with the 
wide usage of wind energy is difficulties in predicting the 
power generation of wind farms. Power curve models can be 
used for different proposes such as forecasting the output 
power of wind turbines, studying the effects of aging on 
turbine output, planning maintenance schedules and 
performing feasibility studies for wind farms, as well as 
simulating the planned extension of existing wind farms. 
Metrological parameters like wind speed could be predicted 
by forecasting techniques for future periods and 
consequently, an accurate power curve estimates the output 
of turbine based on forecasted inputs. Several researches has 
been conducted for modelling the wind turbine power curve, 
generally these researches could be divided into three main 
categories; i) parametric modelling, ii) non-parametric 
modelling and iii) probabilistic modeling.  
Parametric models try to find a mathematical relationship 
between the input and output parameters of wind turbine. 
Different curve fitting and regressions techniques has been 
employed for parametric models including liner regression 
models, polynomial regression, logistic regressions and 
weighted polynomials regression [1-5]. Unlike parametric 
methods, non-parametric models do not look for a 
mathematical relationship between the outputs and inputs by 
establishing a model and train it in a way to minimize the 
deviation between observed data and outputs. Neural 
networks, fuzzy-clustering centers, random forest and data 

mining methods are samples of non-parametric methods [1-
5]. These techniques are usually less sensitive to outliers in 
the observation data, more flexible, and do not have the 
global error penetration problems that most parametric 
models suffer from [3]. The idea of probabilistic model is 
based on the fact that for each wind speed value, the output 
of wind turbine is a random variable which is symmetrically 
distributed over the mean power value at that speed with a 
standard deviation of ߪఢ. In fact the actual output power can 
be considered to be a random variable [1].  
This paper will simulate, analyze and compare the results of 
three parametric (conventional liner regression, conventional 
polynomial regression and robust polynomial regression) 
and one non-parametric (neural networks) methods for 
modeling the wind turbine power curve. Two case studies 
will be implemented using the datasets of two different 
turbines, moreover the effect of power curve segmentation 
and outlier filtering will be studied. 

2. PROBLEM FORMULATION AND MODELS 
Wind turbine power curve is considered to be a nonlinear 
function of wind speed. Fig. 1 shows a typical power curve 
which is usually provided by the turbine manufacturer [6]. 
This power curve could be characterized by three different 
wind speed levels, Vcut-in is the speed which the wind turbine 
starts to operate; the speeds lower than this value cannot 
spine the wind turbine blades. Vcut-out is the highest designed 
speed for the safe operation of wind turbine; at speeds 
higher than this value the turbine shall be locked.  Vrated 
(Vr)is the speed that the turbine is expected to have nominal 
output power; in fact the turbine is designed to be mostly 
operating at this speed. Theoretically, the power that could 
be captured by a wind turbine is calculated by Bitz formula 
as follow: 
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where Vw is the measured wind speed at turbine hub, ρ is the 
air density (kg/m3), Cp is power coefficient, η is machine 
efficiency (mechanical and electrical) and A is the area 
swept by rotor. In spite of the above formulation and initial 
power curve which is usually provided by turbine 
manufacturer, the real (actual) output power of wind 
turbines vary by different parameters such as geographical 
and metrological situation of the site, efficiency of electro-
mechanical parts of turbine which significantly changes by 
the time and aging, etc. Fig. 2 shows the scatter diagram of 
real data measured for a typical wind turbine working in real 
site condition versus theoretical power curve submitted by 
manufacturer [7]. 
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Fig. 1. A sample power curve provided by 

Fig. 2. Real power measured versus the man
 

As discussed in the previous section, d
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2.1 Linear Regression Models 
Regression analysis is the part of statist
investigation of the relationships betw
variables related in a non-deterministic
example, the power curve of a wind turbin
as a straight line: ܲ ൌ ߚ  ଵߚ ܸ                                     ߝ
where, ܲ is the output power of turbine, 
wind speed, ߝ is the deviation betwe
estimated values which is a random varia
while Var(ߝሻ ൌ ଵ are intercߚ    andߚ ,ఌଶߪ
regressions model, respectively [9].  
The least square method will be use
random deviations (ߝሻ using the fo
function:  ݂ሺߚ, ଵሻߚ ൌ ∑ ሺ ܲ െ ܲሻଶୀଵ                        
where, ܲ  is measured value of power, ܲ  
by model and n is the number of observaߚଵ will be calculated based on minimizing

2.2 Polynomial Regression 
 According to Bitz formulation (Eq. 1),
degree polynomial can be used as a basic 
ideal situation of wind power: ܲ ൌ ߚ  ଵߚ ௦ܸ  ଶߚ ௦ܸଶ  ߚ ܸଷ           ߝ
Again the set of parameters ሾߚ ߚଵ ߚଶߚଷሿ
based on the least square method.  

2.3 Robust Regression 
Linear regression models are based 
distribution of residuals in the observe
situation, the dispersion of observed data
not symmetrical and there are differe
outliers within the data; therefore, using
could lead to better performance in th
regression works by assigning a weight 
Weighting is done automatically and i
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2.4 Neural Network  
The neural network (NN) is a
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3. DATA SETS AND DATA PREPROCESSING 
The farm selected as a case study is the Norrekaer Enge II 
wind farm with 42 turbines and two metrological station 
(Mast#1,2) within the farm for measurement of wind speed 
and direction in different heights [7]. A set of data for a 
period of one year is used for development of power curve 
models. The database consists of wind speed/ direction of 
two masts and wind speed and output power of each 
turbines in the farm. Time interval for data logging is 10 
minutes. For all simulated methods, 2/3 of data sets for one 
year has been used for developing the model and training 
proposes, while the remaining data has been used for 
verification proposes and testing the performance of 
developed models.  

 
Fig. 5. Layout of turbines in the Farm [7] 

3.1 Filtering Measured Data 
Considering the fact that the quality of data is an important 
factor in converging the model residuals and also to achieve 
better training of the model, this paper applies some 
filtration and pre-processing methods to reduce the effect of 
anomalies and outliers in the measured data. As a first step 
the values lower than Vcut-in  and higher than Vcut-out were 
removed from data sets, in the next stage for segmented 
methods (second Strategy), standard deviation of measured 
power values were calculated and according to below 
criteria the outliers were reduced: 
• For segment one, ߪଵ  was equal to 73, then for each wind 

speed the measured power values which were farther than 0.5 ൈ  ଵ from the mean values of power at that windߪ
speed were removed from data sets. 

• For segment two, ߪଶ was equal to 15, then for each wind 
speed the measured power values which were farther than  3 ൈ  ଶ from the mean of power at that wind speed valvesߪ
were removed from data sets. 

4. SIMULATION RESULTS AND DISCUSSIONS 
This section presents the simulation results of power curve 
modelling methods presented in section II. The methods 
were implemented using data sets of two wind turbines A1 
and E4  as two different case studies, moreover two different 
strategies (segmented and non-segmented) were used.  
In the first strategy, the models were built based on the 
whole range of each datasets while in the second strategy the 
data sets were segmented into two subsets, data points lower 
than rated wind speed and higher than the rated wind speed 

(Vr=16 m/s), two sets of different models were developed 
for each segment. 
Turbine A1 as the first case study is located in the south-
west corner of wind farm, exactly exposed to wind flown 
from south west [7]. As seen from Figs. 6-7, the non-
segmented models were fitted properly to the linear part of 
the power curve; however for the speeds higher than the 
rated speed, models did not follow the measured data 
properly as they had mostly been affected by the linear part 
of datasets.  

 
Fig. 6.  “A1”, non-segmented modelling versus measured data 

 
Fig. 7.  “E4”, non-segmented modelling versus measured data 

To demonstrate the effect of outliers, they were not filtered 
in non-segmented models. The randomly dispersed green 
points in Figs. 6-7 are samples of outliers. Comparing these 
figures will explore another important issue; E4 which is 
located in the middle of the farm and surrounded by 
different turbines has more outlier data in comparison to A1 
which is located in the corner. This shows the effect of 
location and could be explained as the disturbance and 
turbulence made by other turbines surrounded the turbines 
like E4.  
In the second strategy, the power curves were divided into 
two segments, section one included the data below the rated 
speed (16 m/s) and section two included the measured 
power data higher than the rated speed. For each section, 
different sets four parametric models and one nonparametric 
model were developed. Figs. 8-13 show the results of 
different models for turbines A1 and E4. As it can be seen, 
fitted models tried to follow the data sets in each section 
individually. This tendency was more sensible in 
conventional regression models which suffer more from 
their global nature. 

A1 

E4 
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Fig. 8. “A1”, Segment 1 Modelling versus real power 

 

 
Fig. 9. “A1”, Segment 2 Modelling versus real power 

 

 
Fig. 10. “A1”, both segment models combined versus real power 

 
Fig. 11. “E4”, Segment 1 Modelling versus real power 

 

 
Fig. 12. “E4”, Segment 2 Modelling versus real power 

 

 
Fig. 13. “E4”, both segment models combined versus real power
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Table I. Error results of fitting models 

 

Segmented Models Non-Segmented Models 

Turbine A1 Turbine E4 Turbine A1 Turbine E4 

MAPE 

(%) 
MAE RMSE 

MAPE 

(%) 
MAE RMSE 

MAPE 

(%) 
MAE RMSE 

MAPE 

(%) 
MAE RMSE 

Conventional Linear 

Regression 5.86 6.18 9.54 9.49 7.22 10.36 6.87 9.53 25.59 13.39 12.76 26.96 

Conventional 

Polynomial Regression 5.81 6.27 10.47 8.70 7.05 10.52 6.87 7.31 13.36 11.19 9.70 21.30 

Robust Polynomial 

Regression 4.02 4.70 10.49 6.89 5.96 9.59 4.17 4.93 11.58 11.18 9.62 20.94 

Neural Networks 4.47 4.78 8.05 7.22 6.03 9.57 5.05 6.40 14.97 12.65 10.14 19.47 

Three different error criteria were deployed to evaluate the 
simulation results for power curve modelling. These include 
mean absolute error (MAE), root mean squared error 
(RMSE) and mean absolute percentage error (MAPE):   ܧܣܯ ൌ 1݊ ห ܲ െ ܲห

ୀଵ  

ܧܵܯܴ  ൌ ටଵ ∑ ሺ ܲ െ ܲሻଶୀଵ ܧܲܣܯ (6)                                         ൌ 1݊  ห ܲ െ ܲหܲ


ୀଵ  

where, ܲ  is measured value of power, ܲ  is power estimated 
by each model and n is the number of observation points. 
Table I presents the error values in detail for two case 
studies (Turbine A1, E4), with four different methods as 
described in section II, considering non-segmented and 
segmented power curve strategies. 
Generally, segmented models showed better response to 
fitted models in comparison to the non-segmented models. 
This could be proved by comparing the three different error 
values for both case studies. The difference between error 
values in non-segmented and segmented strategies were 
more sensible in case two (E4) compared to case one (A1) 
as outlier dispersions were more governing the fitting 
models rather than valid measured data. 

5. CONCLUSION 
This paper has evaluated parametric and non-parametric 
methods for power curve modelling of wind turbines 
through detailed simulation and analysis. Three parametric 
models (including conventional liner regression, 
conventional polynomial regression and robust polynomial 
regression) and one non-parametric model based on feed-
forward neural network were explained and implemented in 
two case studies (using data sets of A1 and E4) considering 
two different segmented and non-segmented strategies. 
Simulation results were also used to investigate the effect of 
outliers on the developed models. The main conclusions are:  
• By considering non-segmented models as a bench mark 

of previous researches done with similar techniques, the 
results of methods developed in this paper were far more 
improved in comparison to the previous works, this was 
achieved by power curve segmentation, filtering outliers 
and using more robust techniques for modeling. 

• Robust Polynomial regression between the parametric 
methods and neural network as a non-parametric model 
had the lowest error results (less than 5%). 

• The segmented models showed better response to fitted 
models rather than non-segmented models.  

• The difference between error values in non-segmented 
and segmented strategies are more sensible in case two 
(“E4”) compared to case one (“A1”) as outliers 
dispersion were more governing the fitting models rather 
than valid measured data. 

Our future research will aim to identify more parameters 
engaged with output power of wind turbines and also study 
their effect on the accuracy of developed models, as well as 
employ more robust modelling techniques. 
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