
Digital Chaotic Systems Examples and Application for Data Transmission 
 

Milan Stork  
    

Department of Applied Electronics and Telecommunications, University of West Bohemia,  
30614 Plzen, Czech Republic 

stork@kae.zcu.cz,  
 
  

Abstract 
  

A number of methods have been proposed for synchronizing 
chaotic systems. The most widely used methods are 
continuous synchronization schemes. In a continuous 
synchronization scheme, chaotic systems are coupled to each 
other continuously such that synchronization errors 
converge to zero. In this paper, chaos synchronization in 
coupled discrete-time dynamical systems is presented. 
Especially, practical impulsive synchronization scheme for 3 
discrete time chaotic systems is shown. Simulation results 
finally demonstrate the effectiveness of the method. 
Experimental results show that chaotic and hyperchaotic 
systems can be synchronized by impulses sampled from one 
or two state variables. The impulsive synchronization can be 
applied to almost all chaotic and hyperchaotic systems even 
in the case when continuous synchronization systems fail to 
work. The example of data transmission based on simple 
discrete-time chaotic systems is also presented.  

 
1. Introduction 

 
In the past time, synchronization of the chaotic systems has 

attracted considerable attention due to its great potential 
applications in secure communication, chemical reactions and 
biological systems. The first idea of synchronization between 
two chaotic systems with different initial conditions was 
introduced by Pecora and Carroll [1]. Since then, many different 
methods have been applied theoretically and experimentally to 
synchronize the chaotic systems, such as linear and nonlinear 
feedback control, adaptive control, back stepping control, 
variable structure control, impulsive control, etc. Among these 
methods, the impulsive control provides an efficient method to 
deal with the dynamical systems. Additionally, in 
synchronization process, the response system receives the 
information from the drive system only at the discrete time 
instants, which reduces the amount of synchronization 
information transmitted from the drive system to the response 
system and makes this method more efficient in a great number 
of applications. Most of the researchers just concern the 
synchronization between two identical chaotic systems with 
known parameters or identical unknown parameters. However, 
in reality there is hardly find the case where the structures of the 
drive and the response systems can be assumed to be identical. 
Moreover, the parametric uncertainties of the drive and response 
systems are always different and time-varying. Therefore, it is 
significant to investigate the synchronization between two little 
different or different chaotic systems in the presence of time-
varying parametric uncertainties. A chaotic system is extremely 
sensitive  to  tiny  variations  of  parameters. But  parameters  of  
 
 

some systems in practical circumstances cannot be exactly 
known in advance. The effect of these uncertainties will destroy 
the synchronization and even break it. Therefore, it is important 
and necessary to study synchronization in such systems with 
parametric uncertainties. 

Impulsive synchronization had been applied to several 
chaotic spread spectrum secure communication systems, and 
had exhibited good performance [2, 3, 4]. Recently, the detailed 
experiments and performance analysis of impulsive 
synchronization were carried out for the purpose of applying 
impulsive synchronization to chaotic communication systems. 
The following experimental results were reported in [5]: 

a) The accuracy of synchronization depends on both the 
period and the width of the impulse samples. 

b) The minimum impulse width for synchronization increases 
as the impulse period increases. 

c) The hyperchaotic systems can be synchronized by 
transmitting two kinds of samples through a single channel via a 
time-division scheme.  

These experimental results showed that chaotic systems can 
be impulsively synchronized by using impulse samples derived 
from some of the state variables of the driven system. This is 
because some chaotic systems can be decomposed into two 
parts. One part tends to make the synchronization unstable and 
the other part tends to make the synchronization stable. If we 
construct impulsive controllers to stabilize the unstable part we 
can synchronize chaotic systems by using samples from some 
state variables of the driven system. 

In this paper, we use variational synchronization error 
systems to study the stability of different impulsive 
synchronization schemes.  

The stability of impulsive synchronization is closely 
connected to the values of the Lyapunov components of the 
variational systems. In a unidirectional directional 
synchronization scheme, during some time periods, the driving 
signal can cause the synchronization error to increase and during 
some other time periods it can cause synchronization error to 
decrease. These two kinds of time periods can be distinguished 
by monitoring the eigenvalues of the variational synchronization 
error systems. When the driving signal in a time period is 
detected to be more likely to increase synchronization errors, we 
do not use it to drive the driven system. By doing this, we can 
synchronize two chaotic systems much more efficiently than a 
continuous synchronization scheme. This kind of 
synchronization scheme is called selective synchronization. The 
selective synchronization scheme can synchronize chaotic 
systems which cannot be synchronized by a continuous 
synchronization scheme under similar conditions. 
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Fig. 1. Block diagram of impulse synchronization between 2 
systems 

   
2. Synchronization of chaotic systems 

      
In this section, we only consider the impulsive 

synchronization between two chaotic systems with 
unidirectional coupling. In a uni-coupled synchronization 
scheme (Fig. 1), we transmit impulses sampled from one state 
variable of the driving system S1 (master or transmitter) to the 
driven system S2 (slave or receiver). To avoid clutter and 
without loss of generality, we study the case when impulse 
samples are equidistant. Consider the following general form of 
a continuous dynamical system whose state variables can be 
separated into two parts xn+1 and yn+1 by (1): 
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Let us assume that samples of the state variable xn are sent to 
the driven system. During the time interval when the n-th 
sample is send from drive system to driven system (Fig. 1, 
switch on), the driven system can be described by: 
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During the time interval when the switch is off, the driven 
system can be described as: 
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The synchronization error systems are given by: 
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 or by equation (5): 
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where n n nr x x= −  and n n ns y y= − .  
The Lyapunov exponents for a particular driven trajectory are 

called conditional Lyapunov exponents. Then the discrete 
version of Pecora and Carroll Theorem is given as follows [6]: 

Theorem 1: The systems S1 and S2 will synchronize if the 
conditional Lyapunov expoments of the difference system (4) are 
all negative. 

The most often way to synchronize the two systems is 
coupling. There are many ways of coupling. In this paper, the 
following coupling is used: 
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or equivalently: 
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where K is a constant. The system (6), (7) is xn coupled and it is 
important to note that system S1 is not affected by S2. 

Theorem 2: The systems ,  n nx y and ,n nx y  will synchronize 
if the conditional Lyapunov expoments of the difference system 
(4) are all negative and K is sufficiently close to 1. 

  

 
      

Fig. 2. The projection of state space trajectories for Lorenz digital 
chaotic system for a=1.2; b=0.8; x0=0.1; y0=0.1; 

 

 
   

Fig. 3. Evolution of yn for Lorenz digital 
chaotic system for a=1.2; b=0.8; x0=0.1; y0=0.1; 

 

 
  

Fig. 4. The projection of state space trajectories for fold digital 
chaotic system for values: a=-0.09; b=-1.6; x0=0.1; y0=0.1; 

  
3. Examples of digital chaotic systems 

  
In this paper we tested the chaos synchronization of three 

discrete-time chaotic systems: Lorenz, fold and Rössler. The 
discrete-time chaotic systems have some advantages over the 
continuous systems. They are chaotic in wider range and are can 
be easily constructed by computer, microcontroller or by 
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programmable logic. The Lorenz digital chaotic system is given 
by: 
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The example of state space trajectories are shown in Fig. 2 
and evolution of yn in Fig. 3. Maximal Lyapunov exponent is 
0.335. 

The second system is "fold" discrete-time chaotic system 
(sometimes also called fold bifurcation, saddle-node bifurcation 
or tangent bifurcation). This system is simple for construction 
and equations of this system are given by:  
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The state space trajectories are shown in Fig. 3 and evolution 
of xn in Fig. 4. Maximal Lyapunov exponent for this system is 
0.02. 

 

 
 

Fig. 5. Evolution of xn for fold discrete-time 
chaotic system for a=-0.09; b=-1.6; x0=0.1; y0=0.1; 

 
The Rössler discrete-time hyperchaotic system is described by: 
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Fig. 6. The projection of state space trajectories of Rössler 
discrete-time hyperchaotic system for values: 

a=3.8; b=0.05; c=0.35; d=3.78; e=0.2; f=0.1; g=1.9; x0=0.1; 
y0=0.1; z0=0; 

The state space trajectories of this system are shown in Fig. 
6, evolution of xn, is shown in Fig. 7. Maximal Lyapunov 

exponent for this system is 0.41 (This system has 2 positive 
exponents). 

 

 
 

Fig. 7. Evolution of xn for Rössler discrete-time hyperchaotic 
system. Constants and initial values are the same as in Fig. 6. 

 

 
 

Fig. 8. Synchronization of 2 discrete-time Lorenz systems 
with different parameters and initial values. Transmitter state 

evolution xt (top), receiver state evolution xr (middle) and 
error = xt - xr (bottom). 

  
4. Systems synchronization 

  
In this section, simulation examples of discrete/time chaotic 

systems are presented. Only unidirectional coupling cases are 
shown. The minimal number of controlled variables has to be 
equal to the number of positive Lyapunov exponents of the 
system. If the hyperchaotic systems have two positive Lyapunov 
exponents, then, at least two driving signals are needed to 
synchronize them [7, 8, 9, 10, 11, 12, 13, 14].  

The example of synchronization of 2 Lorenz systems (S1 and 
S2) with different parameters and initial value is shown in Fig. 8. 
Systems parameters are: 

S1:  a=1.25; b=0.75; x0=0.05; y0=0.05; 
S2:  a=1.22; b=0.73; x0=0.10; y0=0.01; 
Driving signal for Lorenz systems synchronization is given 

by dn (generated by driving system): 
 

(1 )  -  -  n n n n nd ab x bx y xε= +  (11) 
 

where � is positive constant (0<�<1). In presented example 
�=0.3. Slave system equations are: 
 

             1
2

1 (1 )
n n n

n n n

x d x
y b y bx

ε+

+

= +

= − +
              (12)  

 

The example of synchronization of 2 fold systems (S1 and S2) 
with different parameters and initial value is shown in Fig. 9. 
Systems parameters are: 

S1:  a=-0.10; b=-1.70; x0=0.10; y0=0.10; 
S2:  a=-0.11; b=-1.71; x0=0.05; y0=0.05; 
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Driving signal for fold systems synchronization is given by dn 
(generated by driving system): 

 

2  -  n n nd x b yε= +    (13) 
 

where � is positive constant (0<�<1). In presented example 
�=0.2. Slave system equations are: 
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Fig. 9. Synchronization of 2 discrete-time fold systems with 
different parameters and initial values. Transmitter state 

evolution yt (top), receiver state evolution yr (middle) and 
error = yt - yr (bottom). 

 

 
 

Fig. 10. Synchronization of 2 discrete-time Rössler systems with 
different parameters and initial values. Transmitter state 

evolution xt (top), receiver state evolution xr (middle) and  
error = xt - xr (bottom). 

 
The example of synchronization of 2 Rössler discrete-time 

hyperchaotic system (S1 and S2) with different parameters and 
initial value is shown in Fig. 10. Systems parameters are: 

 

S1:    a=3.8; b=0.05; c=0.35; d=3.78; e=0.2; f=0.10;  
           g=1.9; x0=0.10; y0=0.10; z0=0; 
S2:    a=3.7; b=0.07; c=0.34; d=3.80; e=0.18; f=0.12;  
           g=2.0; x0=0.05; y0=0.05; z0=0; 
 

Driving signals for Rössler discrete-time hyperchaotic system 
synchronization are given by 1dn and 2dn (generated by driving 
system): 
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where � is positive constant (0<�<1). In presented example 
�=0.1. Slave system equations are: 
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Fig. 11. Transmitter block diagram. DI – digital input, 
TO – transmitter output. 
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Fig. 12. Receiver block diagram. 
 

 
 

Fig. 13. Transmitted samples (10 bit word). 
  

5. Data transmission based on chaotic systems 
  

This part is devoted to application of discrete-time chaotic 
systems synchronization for digital data transmission. The two 
fold chaotic systems (9) are used for this purpose. The principle 
of transmission is based on transmitter chaotic system parameter 
b changing according logical signal H and L: 

 
   b=-1.7 for H,    b=-1.65 for L                (17) 
 
 State space variable yn is multiplied by constant and rounds 

the value to the nearest integers (converted to n-bit data word) 
and transmitted to receiver. In receiver, first of all received 
signal is divided by constant and used for synchronization. On 
the end, the digital signal is recovered by signal processing. In 
this example, digital data word is transmitted: 
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         w =  [0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1] 
Block diagram of the transmitter and receiver are shown in 

Fig. 11 and Fig. 12. The transmitted signal (binary coded in 10 
bit word) is shown in Fig. 13, autocorrelation value of 
transmitted signal in Fig. 14 and raw received signal, low-pass 
filtered signal and recovered digital signal are in Fig, 15. 

 

 
 

Fig. 14. Autocorrelation of transmitted signal 
  

 
 

Fig. 15. Data transmission ex.: a) Raw recovered signal,  
b) Low-pass filtered signal, c) Recovered digital signal:  

w = [0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1] 
 

6. Conclusion 
  

In this paper example of 3 discrete-time chaotic systems 
synchronization was shown. Also the data transmission based on 
chaotic system was simulated. All presented systems can be 
more easily realized by means of microcontroller or 
programmable array than continuous chaotic systems. 
Moreover, the discrete-time systems aren’t so sensitive for 
chaotic behavior area as continuous systems. In future, more 
sophistic system for data transfer, based on chaotic systems will 
be developed.   
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