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ABSTRACT 
In this study, based on classical gradient projection 
method of optimisation theory, a dynamic solver for 
linearly constrained linear optimisation problems, 
called gradient projection network is introduced.  To 
illustrate the performance of the network the result 
obtained for a special linear problem is compared to 
those obtained by Kennedy-Chua  network. 
 

I. INTRODUCTION 
In the last two decades, beginning with that 
proposed by Hopfield, various neural network 
structures for optimization problems such as 
linear, quadratic and convex programming have 
been proposed [1, 2]. These structures, also 
called solvers, have the advantage of  being 
implemented on analog hardware, thus 
producing solutions in real time. Compared with 
the traditional techniques which require iterative 
time consuming computations, analog solvers 
can be operated in parallel fasion.  
In this work, first, methods for solving 
optimisation problems will be introduced. 
Thenanalog recurrent neural network structure, 
based on gradient projection method of 
optimisation will be introduced. In section  IV  
simulation results and comparisons with other 
structures will be given. 
 

II. NEURAL NETWORK STRUCTURES FOR 
SOLVİNG OPTİMİZATİON PROBLEMS 

Following the work of Hopfield, various neural 
network structures [2] also called analog solvers 
has been proposed. Most of these depend on 
optimisation methods. In this section these 

methods in connection with analog solvers will 
be reviewed. 
 Analog solvers supply a continuous solutions 
while traditional iterative techniques give 
discrete point solutions.  The dynamic solvers 
for optimization problem, in general, use energy 
descent dynamics, where the dynamics is 
constructed in a way that the objective function 
of optimisation problem named the energy   
decreases along trajectories and at the reached 
minimum point the system states give the 
solution to the problem. At such a state, the 
gradient of the energy function is zero, which is 
also a necessary condition for the state to be an 
extremum of the energy function.  Systems of 
this type, named gradient systems, are 
constructed utilizing the concepts developed for 
stability analysis of a dynamical system 
introduced  in 1892 by the Russian 
mathematician and engineer A. M. Liapunov 
and have the property of convergence if 
solutions are bounded [3]. Because of gradient 
nature of solvers, obtained solutions are local. In 
many optimization problems, especially 
combinatorial problems, time required for 
obtaining global solution grows exponentially 
with the size of problem [4, 5]. An approximate 
solution for such a problem is also meaningful. 
With gradient based techniques, a satisfactory 
but mostly not global solutions can be obtained 
in a reasonable  time. 
Constrained optimisation problems can also be 
handled with gradient based dynamics by 
reorganizing energy function to have an extra 



terms originating from constraints. For equality 
constrained problems, Lagrange multiplier 
technique is used. For inequality constrained 
problems, one way of transforming it to an 
unconstrained one is  by adding a function of the  
constraints as a penalty term to the cost 
function. The method is named as a penalty 
function method and is classified as an exterior 
point method because the minimum is 
approached from the exterior of the feasible 
region. But, this method may give infeasible 
solutions. This is due to the difficulty  in penalty 
parameter setting  ensuring that obtained 
solutions satisfy  the constraints in an exact way.  
Another way of converting a constrained 
problem to an unconstrained  one is barrier 
function method where a term taking an 
infinitely large value at  borders of the feasible 
region is added to cost. This is a kind of interior 
point methods meaning that points obtained by 
the method are always in the feasible region, 
and always give a legal solution. But the 
drawback of this method is that  it is useless  for 
a problem whose solutions are close to the 
border of feasible region. An alternative way to 
handle with constrained problems is the method 
of gradient projection. In this method, search for 
a minimum is done recursively by moving step 
by step towards direction defined by negative 
gradient of the cost function. In the case of a 
constraint violation, i.e., the gradient direction 
points to the infeasible region, so the calculated 
new point is not feasible, the projection of the 
gradient onto the violated constraint surface is 
performed and the search for a minimum is 
continued towards this projected gradient. A 
minimum is obtained when the projected 
gradient is zero, that can happen when the 
gradient of cost function is zero, i.e., the first 
order condition for a point to be a minimum is 
satisfied or when projection of the gradient is 
zero, meaning that there is not feasible direction 
to move.  In the following section, gradient 
projection network based on this idea will be 
introduced.      
 

III. GRADIENT PROJECTION NETWORK 
The proposed gradient projection network 
utilizes the gradient projection concept and can 
be viewed as continuous time version of the 
iterative gradient projection method of 
optimisation explained in previous section.  It is 
obtained for linear cost constrained with linear 
inequalities given as  
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Here )(xE  is a cost function )(xΦ  considered 
as an energy function, and )(xP

aI  is the 
projection matrix obtained  as 
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aIG  
is constructed depending on aI  which is an 
index set of constraints tending to be violated, 
defined as  
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Now 
aIG  is an nI a ×  dimensional matrix 

whose )(ij ’th row )()( ijIa
G  is defined as 
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)()( )( = . Here },...,2,1{)( aIij = is an 
index set for renumbering the active constraints 
indexed by i . 
Even though the right-hand side of proposed 
solver is discontinuous in x , as in [7] and [31] it 
is known that for any initial condition chosen in 
the feasible set there exists a unique solution 
which is continuous, nondifferentiable but right 
differentiable with respect to time and also kept 
in the feasible region. 
Performance of proposed network is compared  
with penalty method based Kennedy-Chua 
solver defined in the form of 
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VI. PERFORMANCE COMPARISON  

In this section, comparison of proposed neural 
network structure with that of Kennedy-Chua 
network will be given. Simulations are done in 
MATLAB as M-files . NNToolbox of 
MATLAB cannot be used for these applications 
since structures are novel for optimisation 
problems. The linear optimization problem 
considered here is a gasoline blending problem 
[1] formulated as 
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By using Euler algorithm and step size of  0.01 
the differential equation in (3) is transformed to 
difference equation 
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Results given in Figure 1 and Figure 2 are 
obtained for 1=s ,  10=s  and initial condition 

[ ]Tx 0000)0( = . It can be seen that as s  
increase, results converges to optimal solution   
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Fig1. Kennedy-Chua result for s=1. 
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Fig2. Kennedy-Chua result for s=10. 
 
Result obtained for gradient projection network  
is given in Figure 3. The difference equation 
corresponding to  differential equation given in 
(2) is as 
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The solver requires initial condition to be  
feasible so initial condition taken as 

[ ]Tx 0000)0( = is first projected to feasible 
region and new initial value is obtained as 

[ ]Tx 35152525= . As can be seen, result 
obtained is an optimal solution.  
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Fig3. Gradient projection network result. 
 

V. CONCLUSION 
 In an iterative gradient projection method, on 
the boundaries, where at each step a new 
constraint becomes active, a jamming effect can 
occur. This is a result of step by step movement 
where the step size can not be chosen arbitrary 



small. In the proposed gradient projection 
network due to continuous nature of system, no 
such a problem arise.  
Continuous solvers based on penalty method 
have the drawback to give unfeasible solutions 
in the case of improperly chosen penalty 
parameters.  The proposed network does not 
require any parameter settings and for   every 
initial condition, the trajectory converges to a 
stable equilibrium point satisfying necessary 
conditions for a point to be minimum.  
The proposed network is general and 
discussions for linear case also hold on for 
linearly constrained quadratic problems.  
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