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ABSTRACT  

One of the most known problems for mobile robots on 
a grid based map is to find the shortest and the lowest 
cost path from one starting cell to one goal cell and 
one starting cell to multi-goal cells.  In this paper, 
three algorithms solving the shortest path problem on 
a grid based map are presented. In addition, the 
concept of path planning for multi-goal cells is 
explained and a comparison among the algorithms is 
performed according to the experimental results. 

I. INTRODUCTION 

Path planning problem is the fundamental problem for 
mobile robots. The graph search algorithms are the most 
known solutions for this problem. These algorithms use 
the directed or undirected graph trees. In addition these 
algorithms were used in most computer games and GPS 
systems for finding the shortest and the lowest cost path 
[1],[4]. 
The most known algorithms for the shortest path problem 
are Breadth-first , Dijkstra and A* algorithms. Most 
studies focus on one of these algorithms and examines 
various types of selected algorithm [5],[6],[8],[10],[12]. 
In this paper, these algorithms are summarized, 
advantages and disadvantages are defined and 
experiments for the comparison of the algorithms on 
various type grid based maps are performed. 
The graph search algorithms are based on node-edge 
notation but this notation lacks when a system like GPS 
gets an image frame , converts it to a map matrix and uses 
this map matrix as the grid based map. In these situations 
using matrix notation gives the advantage of simplicity 
and comprehension. 
Some assumptions are taken into account before starting. 
• The map created is same as the real environment. There 

is no need for re-planning. 
• The map is divided into same size square cells. 
• The ability of traversing is accepted 900 and 4-adjacent 
traversable neighbours is considered [5],[7]. 4- and 8-
adjacency definition is shown in Figure-1. 

 
 
 

Figure -1 a)4-adjacency b)8-adjacency definition 

 
II. BREADTH-FIRST ALGORITHM 

Breadth-first algorithm works with the method branching 
from the starting cell to the neighbour cells (just 
traversable cells), (untraversable cells and cells out of 
boundaries are discarded) until the goal cell is found 
[3],[4]. Every traversable neighbour cell is added to an 
array which is called OPEN LIST. OPEN LIST is the 
array of neighbour cells which must be reviewed in order 
to find the goal cell. OPEN LIST elements are reviewed if 
one is the goal cell or not. Then OPEN LIST grows up 
with the new neighbour cells of the old neighbour cells 
and this procedure goes on until the goal cell is added to 
the OPEN LIST. The cost of the starting cell is 0. The 
cost of each neighbour cell is +1(or +defined constant 
cost) of the cell which added it to the OPEN LIST. The 
costs of the cells  are stored in a matrix(cost-matrix) with 
the same dimensions of the map. Then after adding the 
new neighbour cells , old reviewed cells are pulled out of 
OPEN LIST. This prevents reviewing the reviewed cells 
again. When the goal cell is added to the OPEN LIST , to 
find the shortest path you just  follow from the goal cell to 
the starting cell step by step by the decreasing cost of the 
cells from the cost-matrix If the OPEN LIST is empty 
anytime , this means there is no possible paths. 
The algorithm is as follows : 
 
 
 
 
 
 
 
 
 
 
 

Breadth-first Algorithm : 
1. Define the starting and goal cells. 
2. Load the map matrix. 
3. Add the starting cell to OPEN LIST. 
4. Add the neighbour cells to OPEN LIST. 
5. If OPEN LIST is empty , no possible path. 
6. If goal cell is added to OPEN LIST, define the 
PATH using map matrix. Else compute the cost of 
neighbour cells. 
7. Pull out the reviewed cells from OPEN LIST. 
8. Go to step 4. 

This algorithm is simple to implement, doesn’t need too 
much matrix operations and also doesn’t need to use the 
location of the goal cell (an advantage if the location of 
the goal isn’t defined) but it has two major and important 
disadvantages: 
1.You have to search the whole traversable cells until the 

goal cell is found. In large maps it needs very large 



computational space. It ignores the knowledge of the 
location of the goal cell. 

2. It is impossible to define cells with different costs (just 
traversable and untraversable). 

 
III. DIJKSTRA ALGORITHM 

This algorithm is like Breadth-first algorithm but adds the 
computation of different cost cells (not only the shortest 
path but also the lowest cost path) [4],[6],[9]. In this 
algorithm, again the neighbour cell array OPEN LIST 
exists. First the neighbours of the starting cell are added to 
the OPEN LIST. Then the costs of the neighbours are 
computed. These costs are the costs of moving from 
starting cell to these cells and it is the cost function. 
Neighbour cells are reviewed according to their computed 
costs. The lowest cost cell is found and first the 
neighbours of this cell is added to OPEN LIST(lowest cost 
becomes comparison criterion) For these new cells the 
cost from starting cell to these cells are computed and 
again the neighbours of the lowest cost cell is added to the 
OPEN LIST. This lowest cost criterion obtains the shortest 
path but it has two problems. First OPEN LIST has to be 
sorted according to the costs and the new neighbour cells 
have to be located in the right place in the OPEN LIST. 
The parents of the neighbour cells have to stored in 
PARENTS array in order to locate the new cells and in 
order to find the shortest and the lowest cost path. 
Furthermore if the cost of the neighbor cell is lower than 
its parent cell the neighbour becomes the parent and the 
costs have to re-computed. This procedure goes on until 
the goal cell is added to the OPEN LIST.  When the goal 
cell is added to the OPEN LIST , following the parents of 
the cells from the goal cell to the starting cell gives the 
shortest and the lowest cost path. If the OPEN LIST is 
empty anytime , it means that there is no possible paths. 
Using the lowest cost criterion and the ability of 
computing different cost cells makes this algorithm 
efficient in large and different cost terrain maps. But it is 
lack of searching towards the direction of goal cell. 
The algorithm is as follows :  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. A* ALGORITHM 

This is the most common and efficient used algorithm in 
shortest path finding problems [3],[4],[5],[8],[10],[11],[12]. 
This algorithm has two list arrays OPEN LIST and 
CLOSED LIST. OPEN LIST does the same work and 
CLOSED LIST holds the cells that have to be saved. Again 
first the neighbours of the starting cell are added to the 
OPEN LIST. And again these cells are reviewed according 
to their costs. But this time two cost functions  exist. First 
the G cost function is the cost of moving from the starting 
cell to the current cell and the H cost function is the cost of 
moving from the current cell to the goal cell. The G cost 
function can be computed but the H cost function can just 
be estimated. That’s why this cost function is called 
heuristic cost function. There are several methods for this 
estimation. For 4-adjacent traversable cells Manhattan 
method is the most used method. Other methods can be 
found in the literature [1], [2]. 

H(current_cell)=abs(currentX–goalX)+  
                                          abs (currentY-goalY) 

This method directs the search to the goal cell. The total 
cost function F = G + H is the comparison criterion for the 
cells. OPEN LIST has to be sorted and in addition as the 
comparison criterion the F cost array has to be sorted. The 
parents of the neighbour cells are stored in PARENTS array. 
Again in this algorithm if the cell exists in OPEN LIST  its 
new cost  must be compared to the old cost. If it is lower the 
cell becomes the parent and G and F costs must be re-
computed. The  reviewed cells are placed in the CLOSED 
LIST. Again after the goal cell is added to OPEN LIST, 
following the parent cells gives the shortest path. If the 
OPEN LIST is empty at anytime, it means that there is no 
possible path. 
The algorithm is as follows : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A* Algorithm : 
1. Define the starting and goal cell. 
2. Load the map matrix. 
3. Add the starting cell to OPEN LIST. 
4. Add the staring cell to CLOSED LIST. 
5. Add the neighbour cells to OPEN LIST 
     - If traversable ; 
     - If not in OPEN LIST before ; 
     - If not in CLOSED LIST ; 
With the order compute G , H and F cost function 
values. Record the parent to PARENTS matrix. 
Locate the F cost function value in the right place. 
     - If in OPEN LIST before ; 
compute the G cost function value. If it is better than 
the old value , chance the parent with this parent in 
PARENTS matrix. Update G and F cost functions. 
6. If OPEN LIST is empty , no possible path. 
7. If the goal cell is added to OPEN LIST define the 
PATH using PARENTS matrix.  
8. Find the lowest cost neighbour cell. Add it to 
CLOSED LIST and continue the search on this cell.  
9. Pull out the reviewed cells from OPEN LIST. Go to 
step 5. 

Dijkstra Algorithm : 
1. Define the starting and goal cells. 
2. Load map matrix. 
3. Add the starting cell to OPEN LIST. 
4. Add the neighbour cells to OPEN LIST ,compute the
costs , record their parent cell to PARENTS. 
5. If OPEN LIST is empty , no possible path. 
6. If goal cell is added to OPEN LIST define the PATH
using PARENTS matrix.Else go on. 
7. If neighbour cell is added OPEN LIST before find its
new cost and compare to its old cost. If it is lower , 
update the cost and PARENTS matrix. 
8. Pull out the reviewed cells from OPEN LIST. 
9. Go to step 4. 



This algorithm is the most efficient algorithm because it 
uses both the shortest path information from starting cell 
and the shortest path information to the goal cell. But if 
the location of the goal cell is not known, this algorithm 
can’t be used.  
 
V. PATH PLANNING FOR MULTI-GOAL CELLS 

The algorithms presented above define the algorithms for 
one starting cell – one goal cell. But most applications use 
one starting cell-multiple goal cells without the 
importance of goal cells order. Think that a mobile robot 
has to collect all the trashes in an environment and has to 
turn back to the starting cell. There is no order between 
the trashes and from one trash point you can reach all the 
other trash points. In such cases all possible paths have to 
computed.(Figure-2) First n! paths between the points (n 
= number of goal points , |SG1| , |SG2 |, |SG3| , |G1G2| , 
|G1G3| , |G2G3|) have to computed and then the  shortest 
path from starting point to multi-goal points (all points 

 
 
 
 
 
 
 
 
 

Figure-2 One starting - multi-goal points 
(S : starting point , G1-G2-G3 : goal points) 

have to be visited once)have to computed. This a most 
known problem Traveling Salesman Problem(TSP) in 
graph theory  [13],[14]. As like a traveler salesman has to 
visit a number of towns once and has to turn back to the 
starting town. The number of entire paths that has to be 
computed is (n-1)!/2 (n : number of goal points+1). This 
number is 3 for 3 goal points but for 10 goal points this 
number becomes 1.814.400. Total computation time for 
this number is not acceptable and some techniques is used 
to decrease the number of computation. This subject is not 
goal of our paper and some useful resources can be found 
in [13], [14]. 
The algorithms presented in this paper give some 
computational advantages in path planning for multi-goal 
cells. The algorithms seem to find the shortest path 
between cell to cell but in fact these algorithms can find all 
the shortest paths from the starting cell to all visited cells. 
At this point Breadth-first , Dijkstra and A* have to be 
examined discreetly. Breadth-first and Dijkstra don’t use 
the location of the goal point in the computations that’s 
why they can find all the shortest paths for all visited cells. 
A* can find paths for all visited cells but doesn’t guarantee 
the shortest path because A* uses the location of the goal 
point in its computation. This benefit gives Breadth-first 
and Dijkstra one computation-all use advantage. If the 

goal cell is not in the visited cells, the computation for the 
shortest path between cell to cell has to be repeated. In 
these type of computations, starting the computation 
between the most far goal cells can give an advantage. 
 

VI. EXPERIMENTAL RESULTS 

All the experiments presented below are done with a 
computer with AMD Athlon 2000+ CPU and 384 MB 
RAM. All the algorithms are implemented under 
MATLAB 6.5. The MATLAB Profiler is used to compare 
the computations of the algorithms. 
Experiments are divided into two main groups. One 
starting – one goal and one starting – multi goal cells 
experiments. 
In the first group the algorithms are compared for one 
starting-one goal cells. As mentioned in Section II, the 
Breadth-first algorithm is lack of computing different cost 
cells. So two maps are used for this group. One with same 
cost cells (Breadth-first, Dijkstra, A*) and one for 
different cost cells ( Dijkstra , A*).  
Figure-3 shows the map with the same cost cells and the 
paths for the algorithms. The map is a photo from 
MATLAB Image Processing Toolbox. First it is 
converted to a map matrix then the path is computed from 
this matrix. The dimension of the matrix is 256*256 cells. 
The white cells are assumed as the obstacles and the grey 
cells are assumed as traversable cells. The left top side is 
assumed (0,0). The coordinates of the starting cell and 
goal cell are (2,2) and (255,255). The black curve shows 
the path found. Table-1 lists the comparison of algorithms 
for CPU time, the sum of the cells, the cells visited, the 
path cells. It can be seen that although the Breadth-first 
algorithm visits more cells , its CPU time is better than 
Dijkstra and A*. The cause of this efficiency is the 
simplicity. Dijkstra and A* algorithm need a lot of matrix 
operations and in a map with same cost cells, the costs of 
the cells must be updated very frequently. 

S 

G3 

G2 G1 

Figure-4 shows the map with different cost cells and the 
paths for the algorithms. Again the dimensions are 
256*256 cell and the coordinates of starting cell and goal 
cell are (3,3) and (255,255).This map is created by hand. 
Two layers with costs 60 and 20 surround the big 
obstacles and the empty spaces in the map are filled with 
randomly generated different cost cells. They were shown 
with cells with white and tones of gray according to the 
cost.( white:10 ,white-like grey: 20, grey:30 , dark 
grey:40 , black-like grey: 60) The black curve shows the 
path found. Table-2 lists the comparison of algorithms for 
CPU time, sum of the cells, the cells visited, the path cells 
and cost sum of the path cells. It can be seen from the 
table that A* algorithm doesn’t give the shortest and the 
lowest cost path. The quality of A* algorithm depends on 
the quality of the heuristic cost function H. If H is close to 
the true cost of the remaining path , A* algorithm 
guarantees finding the shortest and lowest cost path. In 
other condition A* gives no guarantee but it is still 
efficient. Table-2 shows that the cost sum of the path  



  
Figure-3 Same cost cell-map  a) Breadth-first b) Dijkstra c) A* 

Table-1 Comparison of algorithms for same cost cell-map 
Algorithm CPU time(s) sum of the cells 

visited 
sum of the path 

cells 

Breadth-first 1.078 43002  506 

Dijkstra 2.625 43004 506 

A* 2.297 25134 506 
 

        
Figure-4 Different cost cell-map   a) Dijkstra  b) A* 

Table-2 Comparison of algorithms for different cost-cell map 
Algorithm CPU time(s) sum of the 

cells visited 
sum of the 
path cells 

cost sum of 
the path 

cells 

Dijkstra 2.094 35280 537 6970 

A* 1.718 26990 545 7000 

cells found by A* is % 0.4 higher than Dijkstra’s but it is 
% 21.9 faster and it needs %30.7 less memory according 
to the sum of the cells visited. 
In the second group algorithms are compared for one 
starting-multi goal cells. Again the map with different 
cost cells is used. Three goal cells is defined on the map. 
The coordinates of starting cell and goal cells are given 
below. 
S : (3,3) 
G1 : (120,5) G2 : (190,140) G3 : (70,185) 

Figure-5 shows the map and the path for the algorithms. 
Table-3 lists the comparison of algorithms for different 
start-goal points , CPU times , sum of the path cells cost 
sum of the path cells and selected path ,total CPU time , 
sum of the path cells and the cost sum of the path cells. 
This time A* gives the shortest path. It can be seen that 
the total CPU times are very close. This result comes 
from the advantage of computing paths using visited cells. 
In Dijkstra |SG1|, |SG3| and |G1G2| cells are visited in the 
previous path and there is no need to  
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Figure-5 Different cost cell-map with multi-goal points  a) Dijkstra b) A* 

Table –3 Comparison of algorithms for different cost-cell map with multi-goal points 
Algorithm Start-goal points 

(most far goal first) 

CPU time(s)  sum of the 

path cells 

cost sum of 

the path cells 

Dijkstra |SG2| 1.453 359 4770 

 |SG1|* 0.078 198 2900 

 |SG3|* 0.094 276 4220 

 |G1G3| 1.594 265 3380 

     |G1G2|** 0.078 210 2490 

 |G2G3| 1.875 198 2820 

 * : visited in |SG2|  ** : visited in |G1G3| 
       Selected path 

Algorithm Selected path sum of the path 
cells 

cost sum of 
the path 

cells 

Total CPU 
time 

Dijkstra |SG1|+|G1G2|+|G2G3|+|G3S| 882 12430 5.172 
    

Algorithm Start-goal points 

(most far goal first) 

CPU time(s) sum of the 

path cells 

cost sum of 

the path cells 

A* |SG2| 1.156 359 4780 

 |SG1| 0.672 200 2900 

 |SG3| 0.953 272 4220 

 |G1G3| 0.891 265 3380 

 |G1G2| 0.704 210 2490 

 |G2G3| 0.781 198 2820 

       Selected path 
Algorithm Selected path sum of the path 

cells 
cost sum of 

the path 
cells 

Total CPU 
time 

A* |SG1|+|G1G2|+|G2G3|+|G3S| 880 12430 5.157 

G3 

 G2

G1 

G3 

G2

G1 



re-compute the cells. A* is lack of this advantage but it is 
still more efficient in computing operations. 
 

VII. CONCLUSIONS 

This paper presents three path planning algorithms for a 
mobile robot on grip based map for one starting-one goal 
cell and one starting-multi goal cells. From the results of 
the experiments and the inferences from the algorithms 
some suggestions can be done for path planning for maps 
with same cost cells, different cost cells and with one 
starting-one goal and one starting-multi goal cells.  
For maps with same cost cells, with one starting-one goal 
cell and multi goal cells, using Breadth-first algorithm is 
the best if the computational time is the first desire 
criteria. But if the size of memory is the first criteria using 
A* can be a better alternative.  
For maps with different cost cells and with one starting -
one goal cell A* is best in computational time and size of 
memory. But the heuristic function H for A* must be 
chosen carefully in order to make sure of the shortest and 
lowest cost path.  
For maps with different cost cells and with one starting-
multi goal cells A* is best in computational time with no 
guarantee for the shortest path. But it must be noted that 
Dijkstra, using visited cells advantage especially in 
enormous multi-goal cells and shortest path guarantee, 
can be a good choice in these maps. 
The algorithms use 4-adjacent traversable cells related to 
the mobile robot. If a mobile robot with more movement 
abilities is accepted , using 8- and 16- adjacent traversable 
cells give better results. 
In the experiments A* uses Manhattan method as the 
heuristic function. Using other functions can give better 
results. 
Choosing the shortest path for multi goal cells using the 
TSP solving methods will be the next step of this study 
and it is planned to use real geographical maps instead of 
the imaginary generated maps. 
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