
AN IMPLEMENTATION OF PATH PLANNING ALGORITHMS FOR
MOBILE ROBOTS ON A GRID BASED MAP

 Tolga YÜKSEL Abdullah SEZGİN
e-mail : tyuksel@omu.edu.tr e-mail : asezgin@omu.edu.tr

Ondokuz Mayıs University , Electrical & Electronics Engineering Department , 55139
Kurupelit-SAMSUN-TURKEY

Key words : path planning , Breadth-first , Dijkstra , A* , grid based map

ABSTRACT

One of the most known problems for mobile robots on
a grid based map is to find the shortest and the lowest
cost path from one starting cell to one goal cell and
one starting cell to multi-goal cells. In this paper,
three algorithms solving the shortest path problem on
a grid based map are presented. In addition, the
concept of path planning for multi-goal cells is
explained and a comparison among the algorithms is
performed according to the experimental results.

I. INTRODUCTION

Path planning problem is the fundamental problem for
mobile robots. The graph search algorithms are the most
known solutions for this problem. These algorithms use
the directed or undirected graph trees. In addition these
algorithms were used in most computer games and GPS
systems for finding the shortest and the lowest cost path
[1],[4].
The most known algorithms for the shortest path problem
are Breadth-first , Dijkstra and A* algorithms. Most
studies focus on one of these algorithms and examines
various types of selected algorithm [5],[6],[8],[10],[12].
In this paper, these algorithms are summarized,
advantages and disadvantages are defined and
experiments for the comparison of the algorithms on
various type grid based maps are performed.
The graph search algorithms are based on node-edge
notation but this notation lacks when a system like GPS
gets an image frame , converts it to a map matrix and uses
this map matrix as the grid based map. In these situations
using matrix notation gives the advantage of simplicity
and comprehension.
Some assumptions are taken into account before starting.
• The map created is same as the real environment. There

is no need for re-planning.
• The map is divided into same size square cells.
• The ability of traversing is accepted 900 and 4-adjacent
traversable neighbours is considered [5],[7]. 4- and 8-
adjacency definition is shown in Figure-1.

Figure -1 a)4-adjacency b)8-adjacency definition

II. BREADTH-FIRST ALGORITHM

Breadth-first algorithm works with the method branching
from the starting cell to the neighbour cells (just
traversable cells), (untraversable cells and cells out of
boundaries are discarded) until the goal cell is found
[3],[4]. Every traversable neighbour cell is added to an
array which is called OPEN LIST. OPEN LIST is the
array of neighbour cells which must be reviewed in order
to find the goal cell. OPEN LIST elements are reviewed if
one is the goal cell or not. Then OPEN LIST grows up
with the new neighbour cells of the old neighbour cells
and this procedure goes on until the goal cell is added to
the OPEN LIST. The cost of the starting cell is 0. The
cost of each neighbour cell is +1(or +defined constant
cost) of the cell which added it to the OPEN LIST. The
costs of the cells are stored in a matrix(cost-matrix) with
the same dimensions of the map. Then after adding the
new neighbour cells , old reviewed cells are pulled out of
OPEN LIST. This prevents reviewing the reviewed cells
again. When the goal cell is added to the OPEN LIST , to
find the shortest path you just follow from the goal cell to
the starting cell step by step by the decreasing cost of the
cells from the cost-matrix If the OPEN LIST is empty
anytime , this means there is no possible paths.
The algorithm is as follows :

Breadth-first Algorithm :
1. Define the starting and goal cells.
2. Load the map matrix.
3. Add the starting cell to OPEN LIST.
4. Add the neighbour cells to OPEN LIST.
5. If OPEN LIST is empty , no possible path.
6. If goal cell is added to OPEN LIST, define the
PATH using map matrix. Else compute the cost of
neighbour cells.
7. Pull out the reviewed cells from OPEN LIST.
8. Go to step 4.

This algorithm is simple to implement, doesn’t need too
much matrix operations and also doesn’t need to use the
location of the goal cell (an advantage if the location of
the goal isn’t defined) but it has two major and important
disadvantages:
1.You have to search the whole traversable cells until the

goal cell is found. In large maps it needs very large

computational space. It ignores the knowledge of the
location of the goal cell.

2. It is impossible to define cells with different costs (just
traversable and untraversable).

III. DIJKSTRA ALGORITHM

This algorithm is like Breadth-first algorithm but adds the
computation of different cost cells (not only the shortest
path but also the lowest cost path) [4],[6],[9]. In this
algorithm, again the neighbour cell array OPEN LIST
exists. First the neighbours of the starting cell are added to
the OPEN LIST. Then the costs of the neighbours are
computed. These costs are the costs of moving from
starting cell to these cells and it is the cost function.
Neighbour cells are reviewed according to their computed
costs. The lowest cost cell is found and first the
neighbours of this cell is added to OPEN LIST(lowest cost
becomes comparison criterion) For these new cells the
cost from starting cell to these cells are computed and
again the neighbours of the lowest cost cell is added to the
OPEN LIST. This lowest cost criterion obtains the shortest
path but it has two problems. First OPEN LIST has to be
sorted according to the costs and the new neighbour cells
have to be located in the right place in the OPEN LIST.
The parents of the neighbour cells have to stored in
PARENTS array in order to locate the new cells and in
order to find the shortest and the lowest cost path.
Furthermore if the cost of the neighbor cell is lower than
its parent cell the neighbour becomes the parent and the
costs have to re-computed. This procedure goes on until
the goal cell is added to the OPEN LIST. When the goal
cell is added to the OPEN LIST , following the parents of
the cells from the goal cell to the starting cell gives the
shortest and the lowest cost path. If the OPEN LIST is
empty anytime , it means that there is no possible paths.
Using the lowest cost criterion and the ability of
computing different cost cells makes this algorithm
efficient in large and different cost terrain maps. But it is
lack of searching towards the direction of goal cell.
The algorithm is as follows :

IV. A* ALGORITHM

This is the most common and efficient used algorithm in
shortest path finding problems [3],[4],[5],[8],[10],[11],[12].
This algorithm has two list arrays OPEN LIST and
CLOSED LIST. OPEN LIST does the same work and
CLOSED LIST holds the cells that have to be saved. Again
first the neighbours of the starting cell are added to the
OPEN LIST. And again these cells are reviewed according
to their costs. But this time two cost functions exist. First
the G cost function is the cost of moving from the starting
cell to the current cell and the H cost function is the cost of
moving from the current cell to the goal cell. The G cost
function can be computed but the H cost function can just
be estimated. That’s why this cost function is called
heuristic cost function. There are several methods for this
estimation. For 4-adjacent traversable cells Manhattan
method is the most used method. Other methods can be
found in the literature [1], [2].

H(current_cell)=abs(currentX–goalX)+
 abs (currentY-goalY)

This method directs the search to the goal cell. The total
cost function F = G + H is the comparison criterion for the
cells. OPEN LIST has to be sorted and in addition as the
comparison criterion the F cost array has to be sorted. The
parents of the neighbour cells are stored in PARENTS array.
Again in this algorithm if the cell exists in OPEN LIST its
new cost must be compared to the old cost. If it is lower the
cell becomes the parent and G and F costs must be re-
computed. The reviewed cells are placed in the CLOSED
LIST. Again after the goal cell is added to OPEN LIST,
following the parent cells gives the shortest path. If the
OPEN LIST is empty at anytime, it means that there is no
possible path.
The algorithm is as follows :

A* Algorithm :
1. Define the starting and goal cell.
2. Load the map matrix.
3. Add the starting cell to OPEN LIST.
4. Add the staring cell to CLOSED LIST.
5. Add the neighbour cells to OPEN LIST
 - If traversable ;
 - If not in OPEN LIST before ;
 - If not in CLOSED LIST ;
With the order compute G , H and F cost function
values. Record the parent to PARENTS matrix.
Locate the F cost function value in the right place.
 - If in OPEN LIST before ;
compute the G cost function value. If it is better than
the old value , chance the parent with this parent in
PARENTS matrix. Update G and F cost functions.
6. If OPEN LIST is empty , no possible path.
7. If the goal cell is added to OPEN LIST define the
PATH using PARENTS matrix.
8. Find the lowest cost neighbour cell. Add it to
CLOSED LIST and continue the search on this cell.
9. Pull out the reviewed cells from OPEN LIST. Go to
step 5.

Dijkstra Algorithm :
1. Define the starting and goal cells.
2. Load map matrix.
3. Add the starting cell to OPEN LIST.
4. Add the neighbour cells to OPEN LIST ,compute the
costs , record their parent cell to PARENTS.
5. If OPEN LIST is empty , no possible path.
6. If goal cell is added to OPEN LIST define the PATH
using PARENTS matrix.Else go on.
7. If neighbour cell is added OPEN LIST before find its
new cost and compare to its old cost. If it is lower ,
update the cost and PARENTS matrix.
8. Pull out the reviewed cells from OPEN LIST.
9. Go to step 4.

This algorithm is the most efficient algorithm because it
uses both the shortest path information from starting cell
and the shortest path information to the goal cell. But if
the location of the goal cell is not known, this algorithm
can’t be used.

V. PATH PLANNING FOR MULTI-GOAL CELLS

The algorithms presented above define the algorithms for
one starting cell – one goal cell. But most applications use
one starting cell-multiple goal cells without the
importance of goal cells order. Think that a mobile robot
has to collect all the trashes in an environment and has to
turn back to the starting cell. There is no order between
the trashes and from one trash point you can reach all the
other trash points. In such cases all possible paths have to
computed.(Figure-2) First n! paths between the points (n
= number of goal points , |SG1| , |SG2 |, |SG3| , |G1G2| ,
|G1G3| , |G2G3|) have to computed and then the shortest
path from starting point to multi-goal points (all points

Figure-2 One starting - multi-goal points
(S : starting point , G1-G2-G3 : goal points)

have to be visited once)have to computed. This a most
known problem Traveling Salesman Problem(TSP) in
graph theory [13],[14]. As like a traveler salesman has to
visit a number of towns once and has to turn back to the
starting town. The number of entire paths that has to be
computed is (n-1)!/2 (n : number of goal points+1). This
number is 3 for 3 goal points but for 10 goal points this
number becomes 1.814.400. Total computation time for
this number is not acceptable and some techniques is used
to decrease the number of computation. This subject is not
goal of our paper and some useful resources can be found
in [13], [14].
The algorithms presented in this paper give some
computational advantages in path planning for multi-goal
cells. The algorithms seem to find the shortest path
between cell to cell but in fact these algorithms can find all
the shortest paths from the starting cell to all visited cells.
At this point Breadth-first , Dijkstra and A* have to be
examined discreetly. Breadth-first and Dijkstra don’t use
the location of the goal point in the computations that’s
why they can find all the shortest paths for all visited cells.
A* can find paths for all visited cells but doesn’t guarantee
the shortest path because A* uses the location of the goal
point in its computation. This benefit gives Breadth-first
and Dijkstra one computation-all use advantage. If the

goal cell is not in the visited cells, the computation for the
shortest path between cell to cell has to be repeated. In
these type of computations, starting the computation
between the most far goal cells can give an advantage.

VI. EXPERIMENTAL RESULTS

All the experiments presented below are done with a
computer with AMD Athlon 2000+ CPU and 384 MB
RAM. All the algorithms are implemented under
MATLAB 6.5. The MATLAB Profiler is used to compare
the computations of the algorithms.
Experiments are divided into two main groups. One
starting – one goal and one starting – multi goal cells
experiments.
In the first group the algorithms are compared for one
starting-one goal cells. As mentioned in Section II, the
Breadth-first algorithm is lack of computing different cost
cells. So two maps are used for this group. One with same
cost cells (Breadth-first, Dijkstra, A*) and one for
different cost cells (Dijkstra , A*).
Figure-3 shows the map with the same cost cells and the
paths for the algorithms. The map is a photo from
MATLAB Image Processing Toolbox. First it is
converted to a map matrix then the path is computed from
this matrix. The dimension of the matrix is 256*256 cells.
The white cells are assumed as the obstacles and the grey
cells are assumed as traversable cells. The left top side is
assumed (0,0). The coordinates of the starting cell and
goal cell are (2,2) and (255,255). The black curve shows
the path found. Table-1 lists the comparison of algorithms
for CPU time, the sum of the cells, the cells visited, the
path cells. It can be seen that although the Breadth-first
algorithm visits more cells , its CPU time is better than
Dijkstra and A*. The cause of this efficiency is the
simplicity. Dijkstra and A* algorithm need a lot of matrix
operations and in a map with same cost cells, the costs of
the cells must be updated very frequently.

S

G3

G2 G1

Figure-4 shows the map with different cost cells and the
paths for the algorithms. Again the dimensions are
256*256 cell and the coordinates of starting cell and goal
cell are (3,3) and (255,255).This map is created by hand.
Two layers with costs 60 and 20 surround the big
obstacles and the empty spaces in the map are filled with
randomly generated different cost cells. They were shown
with cells with white and tones of gray according to the
cost.(white:10 ,white-like grey: 20, grey:30 , dark
grey:40 , black-like grey: 60) The black curve shows the
path found. Table-2 lists the comparison of algorithms for
CPU time, sum of the cells, the cells visited, the path cells
and cost sum of the path cells. It can be seen from the
table that A* algorithm doesn’t give the shortest and the
lowest cost path. The quality of A* algorithm depends on
the quality of the heuristic cost function H. If H is close to
the true cost of the remaining path , A* algorithm
guarantees finding the shortest and lowest cost path. In
other condition A* gives no guarantee but it is still
efficient. Table-2 shows that the cost sum of the path

Figure-3 Same cost cell-map a) Breadth-first b) Dijkstra c) A*

Table-1 Comparison of algorithms for same cost cell-map
Algorithm CPU time(s) sum of the cells

visited
sum of the path

cells

Breadth-first 1.078 43002 506

Dijkstra 2.625 43004 506

A* 2.297 25134 506

Figure-4 Different cost cell-map a) Dijkstra b) A*

Table-2 Comparison of algorithms for different cost-cell map
Algorithm CPU time(s) sum of the

cells visited
sum of the
path cells

cost sum of
the path

cells

Dijkstra 2.094 35280 537 6970

A* 1.718 26990 545 7000

cells found by A* is % 0.4 higher than Dijkstra’s but it is
% 21.9 faster and it needs %30.7 less memory according
to the sum of the cells visited.
In the second group algorithms are compared for one
starting-multi goal cells. Again the map with different
cost cells is used. Three goal cells is defined on the map.
The coordinates of starting cell and goal cells are given
below.
S : (3,3)
G1 : (120,5) G2 : (190,140) G3 : (70,185)

Figure-5 shows the map and the path for the algorithms.
Table-3 lists the comparison of algorithms for different
start-goal points , CPU times , sum of the path cells cost
sum of the path cells and selected path ,total CPU time ,
sum of the path cells and the cost sum of the path cells.
This time A* gives the shortest path. It can be seen that
the total CPU times are very close. This result comes
from the advantage of computing paths using visited cells.
In Dijkstra |SG1|, |SG3| and |G1G2| cells are visited in the
previous path and there is no need to

S S

Figure-5 Different cost cell-map with multi-goal points a) Dijkstra b) A*

Table –3 Comparison of algorithms for different cost-cell map with multi-goal points
Algorithm Start-goal points

(most far goal first)

CPU time(s) sum of the

path cells

cost sum of

the path cells

Dijkstra |SG2| 1.453 359 4770

 |SG1|* 0.078 198 2900

 |SG3|* 0.094 276 4220

 |G1G3| 1.594 265 3380

 |G1G2|** 0.078 210 2490

 |G2G3| 1.875 198 2820

 * : visited in |SG2| ** : visited in |G1G3|
 Selected path

Algorithm Selected path sum of the path
cells

cost sum of
the path

cells

Total CPU
time

Dijkstra |SG1|+|G1G2|+|G2G3|+|G3S| 882 12430 5.172

Algorithm Start-goal points

(most far goal first)

CPU time(s) sum of the

path cells

cost sum of

the path cells

A* |SG2| 1.156 359 4780

 |SG1| 0.672 200 2900

 |SG3| 0.953 272 4220

 |G1G3| 0.891 265 3380

 |G1G2| 0.704 210 2490

 |G2G3| 0.781 198 2820

 Selected path
Algorithm Selected path sum of the path

cells
cost sum of

the path
cells

Total CPU
time

A* |SG1|+|G1G2|+|G2G3|+|G3S| 880 12430 5.157

G3

 G2

G1

G3

G2

G1

re-compute the cells. A* is lack of this advantage but it is
still more efficient in computing operations.

VII. CONCLUSIONS

This paper presents three path planning algorithms for a
mobile robot on grip based map for one starting-one goal
cell and one starting-multi goal cells. From the results of
the experiments and the inferences from the algorithms
some suggestions can be done for path planning for maps
with same cost cells, different cost cells and with one
starting-one goal and one starting-multi goal cells.
For maps with same cost cells, with one starting-one goal
cell and multi goal cells, using Breadth-first algorithm is
the best if the computational time is the first desire
criteria. But if the size of memory is the first criteria using
A* can be a better alternative.
For maps with different cost cells and with one starting -
one goal cell A* is best in computational time and size of
memory. But the heuristic function H for A* must be
chosen carefully in order to make sure of the shortest and
lowest cost path.
For maps with different cost cells and with one starting-
multi goal cells A* is best in computational time with no
guarantee for the shortest path. But it must be noted that
Dijkstra, using visited cells advantage especially in
enormous multi-goal cells and shortest path guarantee,
can be a good choice in these maps.
The algorithms use 4-adjacent traversable cells related to
the mobile robot. If a mobile robot with more movement
abilities is accepted , using 8- and 16- adjacent traversable
cells give better results.
In the experiments A* uses Manhattan method as the
heuristic function. Using other functions can give better
results.
Choosing the shortest path for multi goal cells using the
TSP solving methods will be the next step of this study
and it is planned to use real geographical maps instead of
the imaginary generated maps.

VIII. ACKNOWLEDGEMENT

This study is a part of project MF104 at O.M.U. and will
be used in a GPS-like system with LEGO MINDSTORM
based tank-like robot for finding shortest paths on grid
based maps.

IX. REFERENCES

1. P.Lester , “A* Pathfinding for Beginners”, 2004 ,
www.policyalmanac.org/games/aStarTutorial.htm

2. A.J. Patel , “Heuristics”, 2004
http://theory.stanford.edu/~amitp/GameProgramming/H
euristics.html

3. K. Manley, “Pathfinding : From A* to LPA”, seminar
, 21 Apr 2003,
http://csci.mrs.umn.edu/UMMCSciWiki/
pub/CSci3903s03/KellysPaper/seminar.pdf

4. B. Stout, ” Smart Moves :Intelligent Pathfinding ”,
Game Developer , October 1996
www.gamasutra.com/features/19970801/pathfinding.ht
m

5. D.R. Wichmann , B. C. Wünsche , “Automated Route
Finding on Digital Terrains”, Proceedings of IVCNZ
'04, Akaroa, New Zealand, 21-23 November 2004, pp.
107-112.

6. M. Noto, H. Sato,”A method for the Shortest Path
Search by Extended Dijkstra Algorithm”, IEEE
International Conference on Systems, Man, and
Cybernetics, Volume: 3, 8-11 Oct. 2000 Pages:2316 -
2320

7. T. Ersson, X. Hu, “Path Planning and Navigation of
Mobile Robots in Unknown Environments” , , 2001.
Proceedings. 2001 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Volume: 2,29 Oct.-
3 Nov.2001 Pages : 858 - 864

8. A. V. Goldberg, C. Harrelson , “Computing the
Shortest Path : A* Search Meets Graph Theory” ,
Technical Report MSR-TR-2004-24, Microsoft
Research, March 2004.

9. J. Huh , H. Park , Y. Huh , H. Kim , “ Path Planning
and Navigation for autonomous Mobile Robot”,
IECON 02 , Volume: 2 , 5-8 Nov. 2002 Pages:1538 -
1542

10.C. Wurll, D. Henrich , “ Point-to-point and Multi-Goal
Path Planning for Industrial Robots” , Special Issue on
"Motion Planning" of the Journal of Robotic Systems,
2001

11. C. Wurl , D. Henrich , H. Wörn , “ Multi-goal Path
Planning for Industrial Robots”, International
Conference on Robotics and Application (RA'99),
Santa Barbara, USA, Oct. 28-30, 1999

12. T. Goto, T. Kosaka, H. Noborio , “ On the heuristics
of A* or A Algorithm in ITS and Robot Path-
Planning”, Intelligent Robots and Systems, 2003.
(IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on , Volume: 2 , 27-31 Oct.
2003 Pages:1159 - 1166 vol.2

13. D. Appplegate , R Bixby ,C. Chvatal ,W. Cook , “
Solving Traveling Salesman Problem ” ,
www.tsp.gatech.edu

14. K. Hoffman “ Traveling Salesman Problem” ,
http://iris.gmu.edu/~khoffman/papers/trav_salesman.ht
ml

