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Abstract

In this work, a miniature-sized, radio controlled quadrotor
is modeled and a black-box model is found using real-time
flight data. The quadrotor which is used in this work is
equipped with a special telemetry circuit to collect real-time
data. Euler angles versus motor speeds data is used to
identify the nonlinear rotational subsystem of the quadrotor
as a quasi-linear ARX (auto-regressive exogenous) model.
The ARX model performances are tested and found quite
satisfactory.

1. Introduction

Quadrotors are very popular because of their ability to hover
and vertical takeoff and landing (VTOL). As they are commonly
remote-controlled vehicles, a modeling and control problem
arises. It is possible to say that the first mini quadrotor concept
works started to appear in early 2000s and then it turned into a
development race. Different modeling techniques including
Newton-Euler and Euler-Lagrange are used by researchers.
Then the nonlinear dynamics of quadrotor are controlled using
several controller approaches. Proportional-integral-derivative
(PID and other combinations), integral backstepping, feedback
linearization and fuzzy controller techniques are applied.

In the previous work [1], a Crazyflie quadrotor is used. Real-
time flight data is collected and processed to obtain a grey-box
quadrotor dynamical model to represent the rotational flight
dynamics of the quadrotor. The resulting model is compared to
the flight data and some conclusions are given.

In this work, the dynamical model for a plus-type quadrotor
is given. After that the Crazyflie quadrotor is flown and real-
time data is collected. Then this data is analyzed using Matlab to
find an appropriate ARX (auto-regressive exogenous) model.

2. Dynamical Model of Quadrotor

A quadrotor model can be evaluated in two parts: the motor
and the body dynamics. The body dynamics can be divided into
another two: rotational and translational dynamics. See fig. 1.
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Fig. 1. The sub-blocks of the model

2.1. Reference Coordinate Frames

Before giving the model equations, the coordinate frames and
Euler angles have to be described. See fig. 2.

VEHICLE

P

: FRONT

GROUND

Fig. 2. Reference frames, rotation angles and rotation rates

The position and orientation of the quadrotor will be given
relative to a fixed coordinate frame, which is called the inertial
frame. The X and Y axes of the frame are placed parallel and
coincident to the ground while Z axis is pointing upwards in a
right handed configuration. This configuration is also described
by East, North, Up (ENU) coordinates.
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The mobile frame placed to the center of gravity of the
quadrotor is called the body frame. The Xp axis points the
forward direction of the quadrotor, the Yy axis points to the left
and the Zp axis points up in a right-handed configuration.

2.2. Euler Angles and Rotations

The most important problem in quadrotor control is its
orientation in space. The well-known Euler angles
representation is suitable for this purpose. The Euler angles [
(roll), v (pitch) and y (yaw) are the rotation angles about the
axes X, Y and Z respectively (see fig 2).
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The yaw-pitch-roll (YPR or ZYX) composite rotation matrix
[2] that transforms an orientation from the body frame to the
inertial frame is given below.
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The angular velocities (attitude rates) of the quadrotor: p, q
and r are shown in fig. 2.

Q2 (pgqr)eRs 4)
2.3. Thrusts and Torques
All motor on the quadrotor contribute to the main thrust (lift)
relative to their angular velocities. It is possible to say that the
motor M; produces the force fy;;, which is proportional to the
square of the angular speed and the total thrust is the sum of the

individual thrusts. This is given below where k is the lift
constant and o is the speed of motor Mi.
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0 ] = [ 0 ] (6)
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The torques that act about the roll and the pitch axes are
given below.

FB=

Tp = fua — fuz @)
T = fuz — fu1 (®)

The torque about the yaw axis is different from the ones
above, and expressed as follows where b is the drag constant.

Ty = b(—wi + Wiy — Wiz + Wiga) ©)

k(wzzvm - wﬁlz)
k(wiz — wip)
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The torques and thrusts are shown in fig. 3.
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Fig. 3. Torques and thrusts
2.4. Equations of Quadrotor Body

This work only covers the rotational dynamics of quadrotor
due to the lack of precise motion capture system.

It can be said that a traditional quadrotor body is symmetrical
for Xp, Y and Zg axes. Thus, its moment of inertia matrix will
be symmetrical.

Iy O 0
=10 Iyy 0 (11)
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The Newton-Euler based model approach is given below,
where I,- represents the total moment of inertia of a rotor.
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If the Euler angles [J, 0, y assumed to be small, these body
frame model can be generalized to the inertial frame. The
gyroscopic forces are also considered small and they can be
neglected. Finally, the following nonlinear equations of the
rotational dynamics are obtained.

$=1 (18)
. U2

=2 (19)
v=7 (20)

2.5. Equations of the Motor Model

A brushed DC motor model will be sufficient for most of the
quadrotors. The model is nonlinear because of the nonlinear
aerodynamic load of the propeller (k;, = k + b). See fig. 4.
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Fig. 4. Motor model

The parameterized model is given below, where u is the
armature voltage and the state variable x is the motor speed.

X = Ao — 41X — apx? (21)

The pulse width modulation (PWM) duty can be converted to
the armature voltage as given below.

0 < PWMpury < 1L,Vy = Vuppiy * PWMpyry,  (22)
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3. Quadrotor Platform

Crazyflie quadrotor is used in this work. It is a miniature
quadrotor that enables the implementation of low-level software
to run on its onboard microcontroller. It has a radio
communication link to a computer. It can be controlled using a
generic USB joystick. See fig. 5.
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Fig. 5. Motor model

To identify the motors, a special speed sensing circuit is
implemented to one of the motors. The motor speed, the motor
PWM and the battery voltage are recorded on the ground,
exciting the motor giving throttle (in open-loop). Then the PWM
is converted to the armature voltage using the battery (supply)
voltage. Then the motor parameters are estimated using grey-
box estimation [1]. The final model is given below.

Wy = 0.862446V, — 6.814507wy; — 0.006149w,€,i (23)
This model is used on the collected data to obtain the motor

speeds from the PWM values. These speeds are crucial for the
rest of this work.

4. Identification
A mathematic model for an unknown system can be obtained
using collected input-output data. This is called the black-box
modeling approach.
4.1. Input-Mixer and Quasi-Linear Quadrotor Model
To simplify things, a linear model is the best. The quadrotor

model is nonlinear but using an input-mixer, it can be taught as a
linear system. See fig. 6.
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Fig. 6. The input-mixer and the quasi-linear model

The input-mixer equation is given below.

1
) [
u = u, _|EU2 (24)
wal|Lus]

Thus, the model below becomes linear when the output of the
input-mixer is computed.
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4.2. ARX Model Structure

The auto-regressive model that has exogenous input is shown
in fig. 7 where u(t) is input, y(t) is output, w(t) is white noise,
B(q) and 1/A(q) are the output and the noise transfer functions.
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Fig. 7. ARX model

The ARX model can be expressed by the following
polynomial where na is the number of poles, nb-1 is the number
of zeros and nk is pure time delay.

Y(t) +ay(t—1) + -+ apy(t—na) =
b.y(t—nk) + -+ bpy(t —nk —nb + 1) + w(t) (28)
The model parameters a; and b; are found using least-squares
method to minimize the variation between the ARX model and
the measured input-output data.

4.3. Identification Process

To find a suitable ARX model, a Matlab script is prepared. It
selects a limited amount of combinations for na, nb and nk
coefficients then trains an ARX model with this coefficients and
the collected data, iteratively.

Some clues are inspected and some assumptions are made, to
reduce the number of trials.

A priori-knowledge about the model is its order and
causality. It is known that the nonlinear model is of second order
(for each axis). As a second thought, the model is not related to
the past inputs.

From this starting point, it can be said that the order
parameter (na) might be 2 and the input dependency parameter
(nb) might be 1. Finally, the input delay parameter (nk) is
guessed to be non-zero but smaller than 10.

Model orders are given such that ARX (na,nb,nk).
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Fig. 8. Roll axis, ARX(2,1,0)
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An iterative algorithm is used to test ARX models with
different na, nb, nk coefficients. Then the trials are sorted with
respect to their RMS error performances.

The top part of the sorted results is given in table 1.

Table 1. Roll axis models and their performances

Model EMS Error EMS Error

Configuration Tdentification | Validation
AR ( 2.2.0 ) | 00134 00277
ARX( 2.1.8%8 3 | 0,0103 0,0296
AR ( 2.1.9 ) | 0.0099 00301
ARX( 2.1.7 3 | 0.0127 0.0304
AR ( 2.1.6 3 | 0,0140 0,0300
ARX({ 3.1.,4 ) | 00184 00332
ARX( 4.2.0 ) | 00192 00340
ARX( 2.2.0 3 | 00122 00343
AR ( 2.2.6 ) | 0,0157 0,0367
ARX( 3.1.,9 3 | 0,0205 00388
ARX( 3.2.9 ) | 00207 00392
ARX( 2.1.3 ) | 00232 00396

Responses of ARX(2,2,0) and ARX(2,1,8) models to positive
and negative step inputs are given in the following figures.
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Fig. 12. Roll axis, ARX(2,2,0), step responses
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Fig. 13. Roll axis, ARX(2,1,8), step responses

The model that gives the best performance is ARX (2,2,0).
But the amplitude of its step response is very small and cannot
be true.

It can be clearly seen that the positive step response makes
the output of ARX (2,1,8) positive while the negative step
response makes it negative. The amplitudes are growing
exponentially as expected. This configuration is the choice for
this axis. The explicit model is given below.

4.222x1078

- 2 _ 2,8
$(2) = T Ts9,1+ ovser 7D (Whia ~ @in2)Z 0 (29)

The shape of the quadrotor is symmetric about X and Y axes.
Thus, the roll axis model can be used for the pitch axis.
Performance of this model with pitch axis data is shown below.
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Fig. 14. Roll axis, ARX(4,2,0)

This result proves the assumption.

0(2) = 4.222x1078
(1-1.9592"1+0.9567 z72)

(whz — wiy)z™8  (30)
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The best configuration for the yaw axis is shown below.
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Fig. 15. Yaw axis, ARX(2,1,8)
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Fig. 16. Yaw axis, ARX(2,1,8), step responses

Table 2. Yaw axis models and their performances

hodel FMIS Error FMIS Error

Configuration Identification | Validation
AR 2.1.8 ) | 00120 00140
AR 3.2.8 ) [ 00124 0012
AR 2.1.7 O | 00142 00277
AR 2.2.8 O | 00005 00419
ARX( 2.2.7 ) | 00113 0.0461
AR 3,27 ) | 00113 00373
AR 2.1.¢ ) [ 00081 00604
ARX( 2.2.6 ) | 00107 00746
AR 3.1.9 ) | 00082 007835
AR ( 4.2.9 5 [ 00103 00840
AR 2,18 ) | 0.0120 00140
AR 3.2.8 ) [ 00124 0012

ARX(2,1,8) model gives the best performance and its step

responses are reasonable. Thus, it is the chosen model.

The explicit form of the yaw axis model is given in the

equation below.

Y(2) =

1.382%x107°

(1-1.9952z71 4+ 0.995 z72)

* (—wiyy + Wiy — Wiz + 0i)z78 31

5. Conclusions

In this work, a quadrotor is modeled using Newton-Euler
approach. And also the motor of the quadrotor is modeled.

The Crazyflie quadrotor has no speed sensing circuitry for
the motors. The estimated motor model is used to obtain the
motor speeds from the collected flight data.

Motor speeds versus Euler angles data is used to identify
ARX models. A different approach is used to obtain a quasi-
linear model that simplifies the ARX modeling of the nonlinear
quadrotor model.

The final ARX models have nk=8 showing that the quadrotor
software has a relatively big measurement delay. This delay may
be prevented using more effective sensor fusion algorithms.

Validation RMS error performances of the models are
satisfactory, meaning that the work has achieved its goal.
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