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ABSTRACT 

This paper introduces a comprehensive comparison for 
Volterra system identification. Volterra recursive least 
square, neural models trained with eight different learning 
algorithms and four fuzzy inference systems were compared 
in terms of accuracy and convergence speed. Two Volterra 
systems were tested with noise and noiseless cases. The 
simulation results have shown that classical method is 
successful in noiseless case. When the noisy is considered 
neural models have found most successful identification tool.  
 

I. INTRODUCTION 
The Volterra model has a firm mathematical function [1-
4] and has been successfully used to solve many problems 
in science and engineering, such as communication 
channel equalization, echo cancellation, characterization 
of semiconductor devices, distortion analysis of audio 
components, modelling nonlinear phenomenon in random 
seas, identification of inherently nonlinear system for 
control and many other areas [5-11].  
 
The utilization of the Volterra model in nonlinear system 
identification and analysis has become widespread in 
recent years [1-2]. This is perhaps due to generality and 
mathematical tractability of the Volterra model. The 
Volterra model is general nonlinear model in the sense 
that many nonlinear systems of engineering interest can 
be appropriately approximated by a truncated Volterra 
series [1,2,12-14]. It is also mathematically tractable in 
the sense that the Volterra kernels (or transfer function) of 
a nonlinear system can be determined based on the higher 
order statistics of the input and output of the system [3]. 
One of the major tasks in Volterra modelling of nonlinear 
systems is to determine the Volterra kernels (in the time 
domain) or the Volterra transfer function (in the frequency 
domain). In literature, many methods are developed for 
determination of the Volterra transfer functions [15-18]. 
Early works on Volterra filters were based on the least 
mean square (LMS) algorithm [19-20]. Another 
alternative method is to use recursive least squares (RLS) 
algorithms. Recently, Lee and Mathews presented a fast 
transversal algorithm for RLS adaptive filtering [21].  
 

The Volterra series approach has received the most 
attention in the literature [18-23].The Volterra series 
expansion offers a useful parameterization of arbitrary 
analytic nonlinear systems. Such systems with finite 
memory “N+1" can be approximated by a truncated 
Volterra series as follows: 
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where xn is the output, un is the input, h is the linear 
parameter and q is the nonlinear parameter. 
 
Learning and generalization ability, providing plausible 
solution to nonlinear problem, fast real time operation and 
ease of implementation features have made artificial 
neural networks popular in system identification as well 
[25,37]. Fuzzy inference systems (FIS) [34-36] are 
nonlinear systems capable of inferring complex nonlinear 
relationships between input and output variables. The 
system can learn the nonlinear mapping by being 
presented a sequence of input signal and desired response 
pairs, which are used in conjunction with an optimization 
algorithm to determine the values of the system 
parameters. 
 
In this work, the neural and FIS models were used in 
identifying Volterra systems. The performances of these 
models were also compared with RLS method. Neural 
models trained with Broyden-Fletcher-Goldfarb-Shanno 
(BFGS), Powell-Beale conjugate gradient (PB), Fletcher-
Powell conjugate gradient (FP), Polak-Ribiere conjugate 
gradient (PR), standard backpropagation (BP), 
Levenberg-Marquardt (LM), one step secant (OSS) and 
resilient propagation (RP) learning algorithms. FIS 
models are the first order Sugeno type fuzzy system with 
Gaussian curve (GSMF), generalized bell curve (GBMF), 
trapezoidal (TPMF) and triangular (TRMF) membership 
functions. 
 



II. CLASSICAL METHODS 
Many methods have been developed for Volterra system 
identification [15-23]. Adaptive Volterra RLS filters can 
be developed using linear techniques by embedding the 
nonlinear problem into a linear multivariate problem 
More details can be found in [23]. Computational 
complexity of the algorithm can be especially prohibitive 
for large observation window sizes or high filter orders. 
One way of reducing the complexity of the algorithm is to 
introduce a partial decoupling of the sets of filter weights. 
This leads to both a reduction in computational 
complexity and more rapid convergence. This algorithm 
requires fewer computations per iteration to be 
implemented than the standard LMS algorithm. It is the 
advantage of the partially decoupled RLS algorithm. 
Because of this, RLS algorithm is used in this work.   
 

III. ARTIFICIAL NEURAL NETWORKS 
Artificial neural networks (ANNs) are applied in many 
areas because of their learning ability, ease of 
implementation, parallel processing and real-time 
realization. There are many available ANN structures in 
the literature [25]. Multilayered perceptrons (MLPs) are 
the simplest and therefore most commonly used neural 
network architectures. In this work, they have been 
adapted for modeling the Volterra systems. MLPs can be 
trained using many different learning algorithms [25-33]. 
Backpropagation (BP) is a gradient descent method and 
the most commonly adopted MLP training algorithm [26]. 
It has a local minima problem. Resilient propagation (RP) 
algorithm [27] generally provides faster convergence than 
most other algorithms and the role of the RP is to avoid 
the bad influence of the size of the partial derivative on 
the weight update. Conjugate gradients (CGS) are 
alternative approach as to speed up the training process as 
of MLPs. These algorithms are second order methods 
which restrict each step direction to be conjugate to all 
previous step directions. This restriction simplifies the 
computation greatly because it is no longer necessary to 
store or calculate the Hessian or its inverse. There are a 
number of versions of CGs. The Polak-Ribiere (PR) 
version of CG is said to be faster and more accurate than 
Fletcher-Reeves (FR) because PR makes more complex 
assumptions. Powell-Beale (PB) version is the recent one 
[28-29]. Broydon-Fletcher-Goldfarb-Shanno (BFGS) 
method uses an update formula derived from the quasi-
Newton update of Hessian [30]. The inverse Hessian is 
taken as the identity matrix at each step so that the matrix 
is never stored explicitly. Levenberg-Marquardt (LM) is a 
least-squares estimation method based on the maximum 
neighbourhood idea [31-32]. The LM combines the best 
features of the Gauss-Newton technique and the steepest-
descent method, but avoids many of their limitations. In 
particular, it generally does not suffer from the problem of 
slow convergence. One step secant (OSS) method is 
between CGS and BFGS [33].  The Hessian matrix in the 
previous iteration is assumed to be a unit matrix. With the 
help of this, the inverse matrix is not calculated. 

IV. FUZZY INFERENCE SYSTEM 
Fuzzy inference system (FIS) is a popular computing 
framework based on the concepts of fuzzy set theory, 
fuzzy if-then rules and fuzzy reasoning [35]. Basically, a 
fuzzy inference system is composed of fuzzification, 
fuzzy rule base, fuzzy inference system and 
defuzzification blocks. A number of learning algorithms 
used in FIS are available in the literature [34-36]. These 
learning algorithms can be used to construct FISs with 
different properties and characteristics. Some of these 
algorithms are data intensive, recursive (thus giving the 
FIS an adaptive nature), offline, and application specific. 
Some of they have computational complexity. In FIS 
design, it is important to determine the number of 
membership functions (MFs) or rules necessary to 
adequately represent a given system. Given an initial set 
of membership functions, one has to select the best 
possible subset of membership functions for an effective 
representation. 
 

V. SIMULATIONS and RESULTS 
Two examples of Volterra systems are tested for 
comparison. First example is a second-order Volterra 
system [2] and is given as 
 
System#1 
    y(n)= –0.64u(n) + u(n-2) +0.9u2(n) + u2(n-1)             (2) 
 
Second example is a fourth-order Volterra system and is 
given as 
 
System#2 
 y(n) =  2u(n-6) + 5u2(n-6) + 3.4u(n-6)u(n-7) – 4u3(n-6)  
           – 3u4(n-6)                                                             (3) 
 
These systems are tested for noisy and noiseless 
observations. In the simulations, for the both test systems, 
only one input signal used was a zero-mean with Gaussian 
with unit-variance. These both systems were also tested 
for the noiseless and the signal to noise ratio (SNR) of 25 
dB cases. 750 training data sets and 250 test data sets 
were used for neural and FIS models. The results obtained 
from noisy and noiseless simulations were shown in 
Tables 1, 2, and 3 for the system#1 and system#2. In these 
tables, the computation time and root mean squared 
(RMS) errors obtained from the methods were also 
illustrated for accurate comparison.  
 
For system#1, FIS model is a first order Sugeno type 
fuzzy system with 4-inputs and 1-output. Each input has 2 
membership functions and the output has a linear 
membership function. Neural model has 4 neurons in 
input layer, 8 neurons in each hidden layer and 1 neuron 
in output layer. The input and the output neurons have 
linear transfer functions. Each hidden layer has a 
hyperbolic tangent or sigmoid transfer function.  
 



For system#2, FIS model is a first order Sugeno type 
fuzzy system with 5-inputs and 1-output. Each input has 2 
membership functions and the output has a linear 
membership function. Neural model has 5 neurons in 
input layer, 10 neurons in each hidden layer and 1 neuron 
in output layer. Transfer functions are the same order as 
System#1.  
 

VI. CONCLUSIONS 
This study presents a comprehensive comparison of 
Volterra system identification using classic and different 
intelligent techniques. The performances of the methods 
were evaluated for noisy and noiseless cases on the base 
of computer simulations.  

For noiseless case, RLS algorithm was found the best 
method for the both systems. For noisy observation, ANN 
trained with LM was found the best method for among all. 
When computation time is considered in general, the 
fastest method is RLS. ANN models followed this. FISs 
requested largest computation time. As can be seen from 
tables intelligent techniques provide more accuracy when 
the noisy Volterra systems are identified. It should be 
emphasized that ANN models and FIS models require 
large time in training but the response of this models are 
in millisecond levels. 
 

Table 1: RLS method identification results 
 

System#1 System#2 
Noiseless case Noisy case Noiseless case Noisy case 

Method 
 

RMS 
error 

Time(s) RMS 
error 

Time(s) RMS 
error 

Time(s) RMS 
error 

Time(s) 

RLS 5.3x10-13 6.590 0.2860 6.930 6.3x10-12 8.250 0.4832 8.870 
 

Table 2: Neural model identification results 
 

Noiseless case Noisy case 
RMS error RMS error 

Systems ANN 
Algorithm 

Train Test 
Training 
Time (s) Train Test 

Training 
Time (s) 

Epoch 

BFGS 1.2x10-5 4.0x10-5 227.95 1.2x10-4 0.0453 245.49  600 
FR 0.0014 0.0056 87.160 0.0049 0.0501 92.270  300 
PB 0.0024 0.0039 60.190 0.0027 0.0472 63.000  300 
PR 0.0025 0.0069 72.770 0.0054 0.0486 79.980  300 
BP 0.0349 0.0464 676.18 0.0382 0.0591 690.58 6000 
LM 4.3x10-6 6.3x10-5 313.68 4.8x10-8 0.0422 364.07  400 
OSS 5.5x10-4 0.0019 437.31 7.6x10-4 0.0445 452.75 2000 

 
 
 

System#1 

RP 4.9x10-4 0.0014 585.72 0.0013 0.0473 594.56 5000 
BFGS 4.8x10-5 1.4x10-4 483.180 0.0294 0.0303 495.170  600 

FR 0.0067 0.0020 155.550 0.0318 0.0311 180.300  300 
PB 8.2x10-4 0.0062 93.3800 0.0316 0.0330 111.060  300 
PR 5.7x10-4 0.0028 107.050 0.0369 0.0354 122.650  300 
BP 0.0291 0.0114 1005.47 0.0413 0.0310 1020.14 6000 
LM 8.4x10-6 2.0x10-6 998.600 0.0298 0.0282 1035.87  400 
OSS 0.0028 0.0021 719.580 0.0310 0.0310 750.920 2000 

 
 
 

System#2 

RP 7.6x10-4 0.0010 1068.19 0.0518 0.0302 1083.81 5000 
 

Table 3: FIS model identification results 
 

Noiseless case Noisy case 
RMS error RMS error 

Systems FIS 
Membership 

Function Train Test 
Training 
Time (s) Train Test 

Training 
Time (s) 

Epoch 

GSMF 1.7x10-8 1.9x10-8 661.69 1.6x10-8 0.0435 670.97 250 
GBMF 7.1x10-7 7.6x10-7 599.24 1.6x10-8 0.0470 592.26 250 
TPMF 8.8x10-6 0.0066 563.59 1.4x10-6 0.0716 580.84 250 

 
 

System#1 
TRMF 2.9x10-6 0.0049 587.60 6.2x10-7 0.0446 570.79 250 
GSMF 8.9x10-6 2.6x10-5 4653.18 0.0292 0.0444 4714.190 250 
GBMF 9.6x10-6 1.4x10-4 4359.660 0.0291 0.0413 4670.97 250 
TPMF 4.9x10-5 1.7x10-4 4412.05 0.0290 0.0396 4581.83 250 

 
 

System#2 
TRMF 3.9x10-6 6.7x10-5 4608.03 0.0297 0.0336 4466.70 250 
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