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Abstract 
 

It has recently been reported that the four split step finite 
difference time domain (4 SS FDTD) method is isotropic at a 
certain stability factor for each space step value. It is also 
known that the average value of the numerical phase 
velocity of FDTD methods can be corrected for given 
stability factor and space step value. In this paper 
polynomial expressions are obtained for the stability factor 
values giving zero numerical phase velocity anisotropic error 
and zero error average numerical phase velocity. These 
polynomial expressions are included in the 4 SS FDTD 
codes, so that once space value is chosen from simulation 
considerations the stability factor (or the time step) and the 
numerical phase velocity correction factor is obtained 
directly. A performance study of the method show that zero 
error isotropic numerical phase velocity can be obtained at 
space step values as large as five cells per wavelength. The 
method is narrowband for large space step values.     

 
1. Introduction 

 
Finite difference time domain (FDTD) method and its 

variations have proved to be very powerful in solving 
electromagnetic problems [1]. The FDTD method is not error 
free. Errors due to the discretization of the space and time 
domains cause the phase velocity of the waves for numerical 
simulations to differ from physical phase velocity (v) in the 
medium of concern. The magnitudes of these errors are not 
constant and vary with space discretization step size, time 
discretization step size, the frequency of the wave and direction 
of propagation of the wave. These errors cause dispersion and 
delay in the numerical waves. 

There have been several publications for reducing the 
average level or the anisotropy of these errors [2,3]. The 
simplest way of reducing the average level of these errors is to 
multiply v of the medium (or ε  and μ  of the medium) with an 
appropriate constant to bring the average error to zero [2]. This 
is a very simple and effective technique but it has several 
drawbacks. The anisotropic error remains the same, which 
means that the phase velocity is still has large errors in certain 
directions. One other disadvantage of this type of correction is 
that the compensation   is made only for chosen values of the 
wave and domain parameters (frequency, space step size and 
time step size). If one of these parameters is changed the 
multiplication constant for the c should be changed as well.  As 
the compensation is made for a single frequency this 

compensation may not be not appropriate for wide band wave 
pulses.  

A recent publication on a 4 split step unconditionally stable 
FDTD method by the authors of this paper [4] reports that there 
is a certain stability factor for each space step size such that the 
numerical phase velocity is isotropic.  In this paper we show that 
when we use the 4 split step FDTD method of [4] and make a 
correction for the average level of the phase velocity with the 
right choice of parameters, we can have zero average and zero 
anisotropic numerical phase velocity error at a certain 
frequency. 

 
2. Zero Error Numerical Phase Velocity 

 
For simplicity the study has been carried out for 2-D TM 

wave propagation in a lossless, homogenous medium. The 
numerical dispersion relationship of the 4 split step FDTD 
method (4 SS FDTD) is given by [4]: 

 
cos( )tω ζΔ =                                      (1) 

 
where  ζ α β=  and  α  and β  are given by: 
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� is the angular frequency, v is the speed of light in the medium, 
Δt is the time increment and  
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for ( , )x yγ ∈ . Here Δγ represents the space step size and kγ

�  

represents the numerical wavenumber for the corresponding 
direction. The equation (1) can be solved by using iteration 
methods to obtain the numerical propagation velocity in the 
computational domain. 
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It is shown in [4] that for each space step value, Δ,  (Δ= Δx = 
Δy), there exists a stability factor value, s, for which the 
anisotropic error is zero. The stability factor s is defined as: 

 
v ts Δ=
Δ

                                    (5) 

 
and the anisotropic error is defined as: 
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The s values which give zero anisotropic error are plotted 

against Δ in Fig. 1. The average value of the numerical phase 
velocity (npv) for the 4 split step FDTD method, as in similar 

methods, occurs at o22.5φ = . So, the average numerical phase 
velocity can be obtained at each Δ and the corresponding zero 
anisotropic error s value. The normalized average numerical 
phase velocity values are also shown in Fig. 2. Once the  Δ value 
is determined from simulation requirements, we can use Fig. 1 
and 2 to obtain the zero anisotropic s value (or Δt) and the npv 
correction factor (the inverse of the normalized average 
numerical phase velocity). The physical phase velocity is than 
multiplied with this correction factor. Using these s and 
corrected phase velocity values we have a zero error FDTD 
method at the design frequency. 

 

 
 

Fig. 1. Zero anisotropic error s values against the space step. 
 

Alternatively we can obtain polynomial expressions for s and 
npv in terms of Δ. Five term expressions for these functions 
obtained by using Polyfit function of Matlab, for the range 
Δ=λ/5 to Δ=λ/20, where λ represents the wavelength, are given 
below: 

 
2

3 4 5

8.25 119.55 1141.32
 6111.05 16873.60 18572.63
s = − Δ + Δ
− Δ + Δ − Δ

              (7) 

 
2

3 4 5

0.93 2.43 60.97
     512.41 2104.26 3259.82
npv = + Δ − Δ

+ Δ − Δ + Δ
               (8) 

 
Equations (7) and (8) can be incorporated in the codes of the 4 
SS FDTD method so that once the Δ value is chosen from 
simulation considerations the optimum s (or Δt) and npv 

correction factor are obtained and the corrected phase velocity is 
calculated directly. This way it will not be necessary to find s 
and npv correction factor values each time the grid size (Δ) is 
changed. 

 

 
 

Fig. 2. Zero normalized numerical phase velocity (npv) against 
the space step, for s values correspond to Fig. 1. 

 
3. Performance Study 

 
The performance of the method is compared with the 

performances of the conventional FDTD and 2 split step 
unconditionally stable FDTD (2 SS FDTD) methods (ADI [5] 
and LOD [6, 7] methods).  

Fig. 3 shows the normalized numerical phase velocity against 
angle for the conventional FDTD, 2 SS FDTD, uncorrected and 
corrected 4 SS FDTD methods at Δ=λ/5. The time step (or s) 
value of the 4 SS FDTD method is taken to be the value which 
gives zero anisotropic error for Δ=λ/5 ( s=2.16). 

 

 
 

Fig. 3. Normalized numerical phase velocity (npv) against the 
propagation direction, for Δ=λ/5 and s=0.54 for FDTD, s=1.08 

for 2 SS FDTD, s=2.16 for 4 SS FDTD. 
 

The s values for the other two methods are chosen such that the 
split step time step size of the 2 SS FDTD and 4 SS FDTD 
methods are the same as the time step of the conventional FDTD 
method (i.e. s=0.54 for conventional FDTD, s=1.08 for 2 SS 
FDTD). This choice of s values ensures that the total number of 
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time steps (including sub steps) is the same for all the methods. 
We can observe from Fig. 3 that the corrected 4 SS FDTD has 
zero error at all angles. It is obvious that if the average npv are 
corrected for conventional FDTD and 2 SS FDTD methods, they 
would still have large anisotropic errors having unacceptably 
large dispersion errors at certain angles. 

Fig. 4 shows the normalized numerical phase velocity against 
angle for the 2 SS FDTD, corrected and uncorrected 4 SS FDTD 
methods at Δ=λ/20. The s value (or Δt) of the 4 SS FDTD 
method is taken to be the value which gives zero anisotropic 
error for Δ=λ/20 (s=4.47). The s value for the 2 SS FDTD 
method (s=2.24) is chosen such that the split step time step size 
of the 2 SS FDTD and 4 SS FDTD methods are the same. As the 
conventional FDTD method becomes unstable at the 
corresponding time step value we could not include it in this 
figure. We can observe from Fig. 4 that the corrected 4 SS 
FDTD has zero error at all angles while the 2 SS FDTD method 
has unacceptably large anisotropic error for this space step size 
as well. 

 

 
 

Fig. 4. Normalized numerical phase velocity (npv) against the 
propagation direction, for Δ=λ/20 and s=2.24 for 2 SS FDTD, 

s=4.47 for 4 SS FDTD. 
 

The zero error performance of the 4 SS FDTD method is 
only valid at the design frequency. When the frequency is 
different the method will have some anisotropic and average 
errors. Fig. 5 shows the average error against normalized 
frequency and Fig. 6 shows anisotropic error against normalized 
frequency for the above three methods. Here Δ is equal to λ/5 at 
the design frequency, f0, and the s values correspond to the 
values in Fig. 3.. We can observe that there are variations in npv 
and anisotropic errors as the frequency changes. If we take 1% 
error as the acceptable error, the bandwidth due to the average 
error (Fig. 5) would be about 4% for the 4 SS FDTD method, 
while the bandwidth due to the anisotropic error (Fig. 6) would 
be much wider. Although the conventional FDTD method would 
have smaller average error over much wider bandwidth if it is 
corrected at the design frequency, its anisotropic error would 
still be very large. 

 

 
 

Fig. 5. Normalized numerical phase velocity (npv) against the 
normalized frequency (f/fo), s=0.54 for FDTD, s=1.08 for 2 SS 

FDTD, s=2.16 for 4 SS FDTD.  
 

 
 

Fig. 6. Anisotropic error against the normalized frequency (f/fo), 
s=0.54 for FDTD, s=1.08 for 2 SS FDTD, s=2.16 for 4 SS 

FDTD. 
 

Fig. 7 shows the average error against frequency and Fig. 8 
shows anisotropic error against frequency for the for the 2 SS 
FDTD and 4 SS FDTD methods. Here Δ is equal to Δ=λ/20 at 
the design frequency, f0, and s values correspond to the values in 
Fig. 4. We can observe that the variations in npv and anisotropic 
errors with frequency is smaller at this Δ. If we take 1% error as 
the acceptable error, the bandwidth due to the average error 
(Fig. 7) would be about 20% for the 4 SS FDTD method, while 
the bandwidth due to the anisotropic error (Fig. 6) would be 
much wider, while the 2 SS FDTD method has large anisotropic 
error. When the performance of the method is studied at Δ 
values larger than λ/5 the bandwidth becomes even narrower. 
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Fig. 7. Normalized numerical phase velocity (npv) against the 
normalized frequency (f/fo), s=2.24 for 2 SS FDTD, s=4.47 for 

4 SS FDTD.  
 

 
 

Fig. 8. Anisotropic error against the normalized frequency (f/fo), 
s=2.24 for 2 SS FDTD, s=4.47 for 4 SS FDTD.  

 
6. Conclusions 

 
The fact that the four split step finite difference time domain 

method is isotropic at a certain stability factor and space step 
values are used with a correction factor to obtain a zero error 
FDTD method. Once the space step size is determined from 
simulation considerations the optimum stability factor and 
normalized phase velocity correction factor are obtained and the 
corrected phase velocity is calculated directly. The performance 
study show that isotropic error performance is possible at even 
very large space step values, but the method is narrow band at 
larger space step values.     
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