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ABSTRACT 
Numerical dispersion performances of the ADI-FDTD 
and Symplectic FDTD methods have been compared.  
It has been shown that for time steps below the 
stability limits of the Symplectic FDTD method it has 
much better dispersion performance compared with 
the ADI-FDTD method and that the Symplectic FDTD 
method can be usefully employed for space increments 
in the order of 25λ  to 50λ .  
 
 

I. INTRODUCTION 
The finite-difference time-domain (FDTD) method has 
widely been used for the solution of electromagnetic 
problems [1]. The stability condition for this method [1] 
imposes a limitation on the time step. When the method is 
applied to electrically small problems this limitation 
necessitates unnecessarily small time steps which increase 
the computational time considerably. Alternating-
direction implicit finite-difference time-domain (ADI-
FDTD) method [2] is unconditionally stable and 
theoretically there is no limitation on the time step size of 
this method. But as the size of the time steps is increased 
the numerical dispersion error becomes significant and the 
time step size for the ADI-FDTD method is limited in use 
by the level of the numerical dispersion error that can be 
tolerated. 
 
On the other hand Symplectic FDTD method [3] is a 
scheme which uses fourth-order finite differencing for 
space and a symplectic scheme using exponential 
differential operators for time. The method reduces the 
numerical dispersion errors significantly. It has been 
shown [3] that the stability limit of this method is much 
higher than the Yee’s FDTD method and that the stability 
limit depends linearly on the number of the exponential 
coefficients. 

In this presentation the performances of the ADI-FDTD 
method, with second order and fourth order finite 
differencing in space, are compared with the 
performances of the Symplectic FDTD method. 
 
II. NUMERICAL DISPERSION PERFORMANCE  
When an electromagnetic problem is simulated in a 
discretized domain the phase velocity of the 
electromagnetic wave differs slightly from the phase 
velocity of the natural medium. The variation in the phase 
velocity is not constant but varies with the frequency, 
direction of propagation and the sizes of the time and 
spatial steps. There has been many publications dealing 
with the numerical dispersion of the ADI-FDTD method 
[4-7].  In this presentation the expression used by 
Weiming Fu et. al.[5] is used for calculating the three 
dimensional (3-D)  dispersion error of the ADI-FDTD 
method, which is given by: 
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respectively. k% represents the numerical wavenumber, ∆ 
(∆=∆x=∆y=∆z) is the cell size, ∆t is the time increment,  



and s c t= ∆ ∆ is the stability factor. The Aγ
 parameters 

in these equations are defined as cos sin
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The dispersion error of the Exponential Coefficient 
Optimized Symplectic FDTD Method can be optimized 
for chosen parameters of the method and the numerical 
error relationship for the Symplectic FDTD is given 
by[3]: 
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The 

γη  parameters are defined in equation (2) and (3). ci 
and di are time step coefficients to be determined. 
 
The equations (1)- (5) have been used to obtain the three 
dimensional numerical dispersion performances of the 
two methods. As the Symplectic FDTD Method has a 
stability limit it was only possible to compare the 
performances of the two methods for time steps 
corresponding to this limit or below.  
The graphical results of the numerical dispersion study 
carried out for the 10 Exponential Coefficient Symplectic 
FDTD and the ADI-FDTD method are given by Figure 1 
to Figure 5.  The Figure 1 and Figure 2 show the 
dispersion errors against the angle θ for space 
increments 25λ  and  50λ  at the stability limit (s=2.45) 
of the Symplectic FDTD. The results are given for the 
conventional 2nd order ADI-FDTD as well as for the 4th 
order ADI-FDTD. The results show that although there is 
not a significant difference in error performance of the 
two ADI-FDTD methods, the errors of the Symplectic 
FDTD method are much smaller.  No results are presented 
against the ϕ  angle as there is no significant variation 
with ϕ. Figure 3 shows the dispersion error against space 
increment (∆) at the stability limit (s=2.45) of the 
Symplectic FDTD method. For both of the ADI-FDTD 
methods the errors become unacceptably high for  ∆  
values larger than 50λ .   The Figure 4 and Figure 5 show 
the dispersion errors against the stability factor s up to the 
stability limit of the Symplectic FDTD for space 
increments 25λ  and  50λ  . As the s increases ( in other 
words as ∆t  increases) the errors for both of the ADI-

FDTD methods increases while the errors of the 
Symplectic FDTD method remains low. 
 
The stability limit of the conventional Yee’s FDTD 
method is 0.577 [1] in 3-D, so it can not be used for 
stability factors above this limit. As the performance of 
the ADI-FDTD method is not acceptable for the stability 
factors (s) in the region 1-2.5 for space increments in the 
region 25λ - 50λ , the Symplectic FDTD method can be 
usefully employed in these regions.       
 

 
 
Figure 1. Dispersion error as a function of propagation 
angle θ, for ϕ=90o, ∆=λ/25 and s=2.45. 
 
 

 
 
Figure 2. Dispersion error as a function of propagation 
angle θ, for ϕ=90o, ∆=λ/50 and s=2.45. 



 
 
Figure 3. Dispersion error as a function of space 
increment per wavelength, for θ =0o, ϕ=90o and s=2.45. 
 
 

 
 
Figure 4. Dispersion error as a function of stability factor, 
for θ =0o, ϕ=90o and ∆=λ/25. 
 

 
 
Figure 5. Dispersion error as a function of stability factor, 
for θ =0o, ϕ=90o and ∆=λ/50. 

 
III. CONCLUSION 

It has been shown that ADI-FDTD method has large 
dispersion errors when the space increments are in the 
order of 25λ  to 50λ  for stability factors of larger than 
1. It has also been shown that for time steps below the 
stability limits of the Symplectic FDTD method it has 
much better dispersion performance compared with the 
ADI-FDTD method. Therefore the symplectic FDTD 
method can be usefully employed for space increments in 
the order of 25λ  to 50λ  for stability limits above 1 and 
below the stability limit of the Symplectic FDTD .  
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