
Segmentation of Breast Region from MR Images  

using Multi-State Cellular Neural Networks 
 

Dogan D.Demirgüne!1, Gökhan Erta!2, Turan Ilõca3,  Osman Ero"ul1, and Ziya Telatar4 

 
1Gülhane Military Medical Academy, Biomedical Engineering Center, Ankara, Turkey 

{ddemirgunes, oerogul}@gata.edu.tr 
2 Yeditepe University, Faculty of Engineering and Architecture, Biomedical Engineering Department, Istanbul, Turkey 

3Gülhane Military Medical Academy, Radiology Department, Ankara, Turkey 
4Ankara University, Faculty of Engineering, Electronics Engineering Department, Ankara, Turkey  

 

 

Abstract 

Computer assisted evaluation of magnetic resonance (MR) 

images for breast density assessment or lesion localization 

requires accurate separation of breast tissues from other 

tissues and regions of the body, such as the chest muscle, 

lungs, heart and ribs.  In this study, we introduce a semi-

automated algorithm that segments breast region from non 

fat-suppressed T2-weighted axial breast MR images. The 

algorithm employs three specially designed multi-state 

cellular neural networks (CNNs) connected in cascade. 

Analysis of 106 high-resolution images from 23 women 

acquired using a 3T MR scanner shows that the algorithm is 

exceptionally effective with high precision, high true-

positive volume fraction, and low false-positive volume 

fraction with an overall performance of 99.1±2.0%, 

99.4±1.4%, and 0.1±0.2%, respectively. The use of multi-

state CNN reduces the false segmentations on the images 

due to noise, intensity inhomogeneity and partial volume 

artifacts.

 

1. Introduction 
 

For the diagnosis of breast cancer and the differential 

diagnosis of enhancing lesions, magnetic resonance imaging 

(MRI) is gaining increased acceptance resulting in the 

accumulation of high-spatial resolution cross-sectional 

morphology and enhancement information that reflects 

vascularity and permeability of breast tissues [1]. When 

compared to x-ray mammography, breast MRI provides superior 

detection and classification of invasive cancer and it is more 

sensitive for ductal carcinoma in situ in high risk women [2]. 

Moreover, breast MRI offers the potential for accurate 

measurement of fibroglandular tissue volume to assess breast 

density, which is a strong risk factor associated with the 

development of breast cancer [3]. To improve interpretation 

accuracy and reproducibility further, there is an apparent need 

for computer assistance to process the large volume of image 

data produced with high spatial and temporal resolution during 

an MR scan [4]. For breast density assessment or lesion 

localization, computer assisted evaluation of MR images 

requires accurate separation of breast tissues from other tissues 

and regions of the body, such as the chest muscle, lungs, heart 

and ribs. Breast region can be segmented as the middle section 

between breast-air and breast-chest wall boundaries. High 

contrast between these boundaries is obtained when non fat-

suppressed images are used. On these images, the breast-air 

boundary is identified easily by searching for a sharp increase in 

the image intensity from the air side provided that the 

background noise is low.  However, breast-chest wall boundary 

detection is a complicated problem due to partial volume and 

intensity inhomogeneity artifacts, especially in the presence of 

dense breast tissue connected to the chest wall muscles and liver 

tissue underneath the muscles. 

Hayton et al. [5] used dynamic programming to detect 

breast-air boundary and iterative morphological erosion followed 

by dilation and graph search to find an approximate location of 

the chest wall. For certain patients, the algorithm generates 

satisfactory results but it requires a long process time and fails if 

the patient’s chest is not flat. Koenig at al. [6] employed 

histogram quantiles for gray level thresholding and intensity 

gradients to detect breast tissue as boundaries. It requires the 

exact location of the nipples and is able to segment the chest-

wall boundary very roughly.  Lu et al. [7] developed a method 

based on mathematical morphology and region growing to locate 

the breast-air boundary and an active contour model to locate the 

breast-chest-wall boundary. The performance of the algorithm 

depends on appropriate selection of the field of view and makes 

several assumptions such as the locations of the axilla, 

midsternum, and nipples. It fails for those patients with large 

breasts where the left and right sides are compressed together.  

Nie et al [8] proposed an initial segmentation based on body 

landmarks followed by simple fuzzy c-mean clustering to 

determine air and lung tissue, B-spline fitting to locate the chest 

wall and dynamic searching to remove the breast skin edge. This 

algorithm requires appropriate selection of the field of view and 

intensive user interaction in each step. It fails when the locations 

of the spinous process of the thoracic spine or the lateral margin 

of the bilateral pectoralis muscles are undetectable from images.  

Segmentation methods that do not require prior information 

concerning breast anatomy have been also studied. Arbach et al. 

[9] introduced a method based on dynamic programming that 

processes computed edge enhanced images. Twellmann et al. 

[10] reported a simple technique that consists of median 

filtering, gray-level-based histogram thresholding using Otsu’s 

method [11], and morphological closing. Better results are 

obtained when Otsu’s method is replaced with k-means 

clustering [12]. Yao et al. [13] used active contours to locate the 

air-breast boundary and dynamic searching to locate the chest 

wall. Ertas et al. [14] proposed a cellular neural network that 

performs gray-level thresholding, biggest region detection and 

morphological erosion followed by reconstruction.   

All of the methods mentioned above are designed to work on 

certain images and are able to generate satisfactory results for 

given degrees of background noise, intensity inhomogeneity and 

partial volume artifacts. Background noise produces apparent 
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signal from regions containing air in the images. Intensity 

inhomogeneity artifacts show up as anatomically irrelevant 

intensity variations on the image mainly induced by the physical 

properties of the receiver surface coil. Partial volume artifacts 

lead to ambiguities in structural definitions on the data blurring 

intensities across boundaries where different tissues contribute to 

a single voxel. Since these effects are due to complex 

electromagnetic interactions between the imaged tissue and the 

acquisition system, they cannot be reduced by simple 

calibrations before scanning. 

In this study, we introduce a semi-automated segmentation 

algorithm that uses non fat-suppressed T2-weighted axial images 

and minimizes the impact of the artifacts described above. The 

images are processed by three specially designed multi-state 

cellular neural networks connected in cascade. Statistical 

analysis results show that the algorithm requires minimal user 

interaction and exceptionally effective for segmenting the breast. 

 

2. Materials and Methods 

2.1. Imaging Protocol 

Magnetic resonance imaging is conducted on a 3.0T MR 

imager (Achieva, Philips Medical Systems Netherlands). 

Patients are placed in a prone position during the scan to 

minimize motion artifacts. A dedicated 8-channel integrated 

SENSE receiver breast coil is used. The imaging sequence is a 

variant of 3D T2-weighted Turbo Spin Echo sequence 

(VISTA), (TR/TE 2000/251ms, flip angle 90°, slice thickness 1 

mm, resolution 0,75×0,75mm2 in x- and y-directions).  
 

2.2. Patient Population and Image Dataset 
 

The dataset analyzed in this study consists of 106 axial 

bilateral breast MR images from 23 women (age: 21–69 years, 

mean age: 45.5 years) that covers 36 fatty, 42 fibroglandular or 

heterogeneously dense and 28 dense breast slices in a range of 

sizes. All 12-bit grayscale images are transferred in a DICOM 

format from the imaging device to a personnel computer for 

analysis with the approval of Ethics Committee of Gülhane 

Medical Military Academy (Ankara, Turkey).  

 

2.3. Breast Region Segmentation using                 

Multi-State Cellular Neural Networks 
 

Cellular Neural Networks (CNNs) provide an alternative 

way to perform morphological operations [15]. Since CNNs can 

be implemented in hardware using special CNN chips, images 

can be processed in real-time; for example, a basic 

morphological operation can be completed within 1#s, 

independent of the image size and the structuring elements [16]. 

CNNs are locally interconnected cells arranged into arrays 

(regularly spaced positions). Consider a 2D M×N image and a 

cell located at position (i, j), i=1,2,…,M, j=1,2,…,N. The r-

neighborhood of the cell located at position (i, j) is defined by 

 

{ }, ,( ) | max(| |,| |) ;  1 ,  1i j m nN r C m i n j r m M n N= − − ≤ ≤ ≤ ≤ ≤    (1) 

 

where r is a positive integer. The output ( , )ty i j and the state 

( , )tx i j  at this location at iteration 1t ≥  can be described by the 

following equations [17]: 
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where g(.) is a monotonous decreasing function. ( , )u i j  is the 

input, ,m nA  and ,m nB  are the entries at the m,n-th neighborhood 

of the feedback and control templates and b is a constant bias 

parameter.  The input and the initial states are assumed to have a 

magnitudes less than or equal to 1.  

CNNs can also be so designed that the state and therefore the 

feedback template and the output may be in multi-dimension 

with dedicated g(.) functions. For instance, the state may be a 

doublet defined by 
(1) ( , ) ( , )t tx i j l i j=                                     (4) 

(2) ( , ) ( , )t tx i j s i j=                                    (5) 

 

where ( , )tl i j  is the label, ( , )ts i j  is the strength. Then the 

feedback template pairs are as follows: 
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here I is the image intensity vector (for a colored image it 

would have 3 components)  and h(I) is a monotonous decreasing 

intensity difference function. When g(.) is selected such that 

1( , ) ( , )t ty i j x i j−= , the input and b are set to 0, and r is set to 1, 

this modified design would allow interactive, multi-label 

segmentation of images for which conventional segmentation 

algorithms may fail. To do this, the user initiates segmentation 

by interactively selecting the voxels on the image for a number 

of labels aimed. The initial label of each selected voxel is set to a 

unique number greater than 1 while the strength of each selected 

voxel is set to 1 (the maximum possible value). The initial 

strengths and the initial labels of the remaining voxels (left 

unselected) are all set to 0.  After each iteration of the multi-state 

CNN algorithm, the strength values change towards 1, except 

those selected by the user.  As the process stabilizes, this change 

will eventually go towards zero.  Therefore the iteration is 

stopped when the total change does not vary from iteration to 

iteration. Vezhnevets et al reports such a design dedicated to 

process only 24-bit images with RGB color space [18]. When 

grayscale depth and high spatial resolution nature of the MR 

images are considered, the design requires some modifications 

and if done, it would also require intensive user guidance and 

long computation times for any numerical implementation. 

To improve the design for use in medical image processing, 

first, we propose the use of the following difference function that 

works with normalized intensity values: 

 

  
( )

2

2

1
( , ) ( , )

2( ) exp
I i j I m n

h I σ
− × −

=
! !

!                    (8) 

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

286



where σ  is the standard deviation, I! is the intensity 

normalized image computed from the image I using 
 

min( )

max( ) min( )

I I
I

I I

−
=

−
!                 (9) 

 

where min(·) and max(·) denote the minimum and maximum 

operators.  

Second, we propose the use of multi-level multi-resolution 

pyramid reduction for the images to be processed and the use of 

multi-state CNNs connected in cascade to minimize user 

guidance and to shorten numerical computation time (see Fig. 1). 

The original (acquired) image is first resized using the 2-level 

Gaussian pyramid reduction defined in [19]. From the second 

level pyramid of the image, the voxels for 3 classes namely 

background, breast and chest are selected by the user.  These 

‘labeled’ voxels and the second level pyramid of the original 

image are the inputs of the first multi-state CNN, mCNN1. The 

output of mCNN1 is eroded using a circle shaped kernel with a 

radius of 6 voxels determined empirically and then expanded 

using Gaussian pyramid interpolation described in [19]. The 

resultant image and the first level pyramid of the image are feed 

to the inputs of the second CNN, mCNN2. The output of mCNN2 

is eroded using the same kernel employed in the previous level 

and then expanded. The resultant image and the acquired image 

are the inputs of the third CNN, mCNN3. The output of mCNN3

gives the segmented breast. The method described above is 

numerically implemented using Matlab R2010a (The 

MathWorks Inc., USA). 

 

 
 

Fig.1. Simplified flowchart of the developed segmentation 

algorithm 

 

2.4. Performance Evaluation 
 

Success of the proposed segmentation algorithm is 

quantified with several metrics computed from the region 

estimated automatically by this method and the region delineated 

manually by an expert.  In this study, to minimize the time 

required for manual segmentations, manual corrections to 

computerized segmentations are used. Let Cs be the set of voxels 

within the breast region estimated by our segmentation method, 

Cr be the set of voxels delineated manually and nℜ
 be the total 

number of voxels within region ℜ . Segmentation precision PR  

is calculated using [20] 

  ( , ) (%) 100s r

s r

C C

s r
C C

n
PR C C

n

∩

∪

= ×         (10) 

 

Segmentation accuracy is assessed using the true-positive 

volume fraction TPVF and false-positive volume fraction FPVF 

percentages calculated by [20] 
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r
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TPVF is the fraction of total amount of voxels delineated by 

the expert that was covered by our method and FPVF is the 

voxels falsely identified by our method as a fraction of the 

amount of the voxels delineated by the expert. Clearly, the 

greater the PR and the TPVF and the smaller the FPVF values 

are, the better will be the segmentation. 

 

3. Results 
 

106 non-fat suppressed T2-weighted high resolution breast 

MR images from twenty-three women that covered 36 fatty, 42 

fibrogulandular or heterogeneously dense and 28 dense breast 

slices in a range of sizes were analyzed using the developed 

algorithm. Plots for the cumulative percentage of segmented 

breasts versus calculated segmentation performance metrics are 

presented in Figs. 2a-2c. From these curves, it can be observed 

that the performance of the algorithm is quite satisfactory. On 

the average, at a PR threshold of 94%, some 95% of the breasts 

are segmented precisely. At a TPVF threshold of 94%, 99% of 

the breasts are segmented correctly and only 9.4% of the breasts 

are misclassified at a FPVF threshold of 0.2%. The segmentation 

algorithm performs well with high precision, high true-positive 

volume fraction and very low false-positive volume fraction with 

a performance of 99.1±2.0%, 99.4±1.4%, and 0.1±0.2%, 

respectively. 

        
       (a)                (b)                                        (c) 

Fig. 2. Plot of cumulative percentage of the segmented breast versus (a) PR,  (b) TPVF and (c) FPVF  
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The efficacy of the segmentation algorithm developed here 

is illustrated using three cases. The first case is for a woman with 

a large fatty breast. Figs. 3a-3c shows the acquired image slice 

and computed first and second level reduced images. On the 

acquired image, near the right breast axilla, a high intensity 

inhomogeneity artifact is noticeable. User labeled voxels for 

background (blue solid area), breast (red solid area) and chest 

(green solid area) regions are seen in Fig. 3d. Figs. 3e-3f shows 

the automatically determined regions by applying morphological 

image erosion followed by image expansion to the outputs of 

mCNN1 and mCNN2, respectively. Boundary of the segmented 

breast (the output of mCNN3) is seen in Fig. 3g. Segmentation 

performance for this case is very good although there is a high 

intensity inhomogeneity artifact near the right breast axilla 

(PR=99.7%, TPVF=99.8% and FPVF=0.04%). False-positives 

are due to a blood vessel located near to the skin of the left 

breast. 

 

 
(a) 

                                
        (b)                   (c) 

                      
                    (d)             (e) 

 
(f) 

 
(g) 

Fig. 3. Fatty breast. (a) Acquired image and (b, c) computed 1st 

and 2nd level reduced images, (d) labeled voxels,  (e, f) eroded 

and expanded outputs of mCNN1 and mCNN2 (g) Segmented 

breast boundary superimposed onto the acquired image 

Acquired image of a medium and heterogeneously dense 

breast with fatty tissue connected to the chest wall is shown in 

Fig. 4a. The image is noisy and corrupted by partial volume 

artifacts. Computed first and second level reduced images are 

given in Figs. 4b and 4c.  User labeled voxels for background, 

breast and chest regions are seen in Fig. 4d.  Figs. 4e and 4f 

show the results of image erosion and expansion applied to the 

outputs of mCNN1 and mCNN2, respectively. Boundary of the 

segmented breast is seen in Fig. 4g. Segmentation performance 

for this case is excellent (PR=100%, TPVF=100% and 

FPVF=0.00%). 

 

 
(a) 

                    
      (b)                    (c) 

                
                        (d)                      (e)  

 
(f)  

 
(g) 

Fig. 4. Heterogeneously dense breast. (a) Acquired image,      

(b, c) 1st and 2nd level reduced images, (d) labeled voxels,                  

(e, f) eroded and expanded outputs of mCNN1 and mCNN2, (g) 

segmented breast boundary 

 

In the third case, a woman with a medium and dense breast is 

considered. As seen in Fig 5a, fibroglandular tissue is connected 

to the chest wall and some fatty tissue is present right 

underneath the midsternum. User selected voxels and 

automatically labeled voxels in the next steps are seen in Figs. 

5b, 5d and 5f. Boundary of the segmented breast is seen in Fig. 

5g. Segmentation performance for this case is good (PR= 

98.3%, TPVF=100% and FPVF= 0.38%). False-positives are 

all due to chest wall muscles. 
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(a) 

            
    (b)                             (c) 

            
                        (d)                      (e)  

 
(f)  

 
(g) 

Fig. 5. Dense breast. (a) Acquired image, (b, c) 1st and 2nd level 

reduced images, (d) labeled voxels, (e, f) eroded and expanded 

outputs of mCNN1 and mCNN2, (g) segmented breast boundary  

4. Conclusion 
 

For breast density assessment or lesion localization, 

computer assisted evaluation of MR images requires accurate 

segmentation of breast tissues from other tissues and regions of 

the body, such as the chest muscle, lungs, heart and ribs. 

Reported breast segmentation methods are able to generate 

satisfactory results for certain patients and for certain degrees of 

background noise, intensity inhomogeneity and partial volume 

artifacts. In this study, we introduce a semi-automated 

segmentation algorithm that uses three specially designed multi-

state cellular neural networks (CNNs) connected in cascade. 

Statistical analysis results show that the algorithm requires 

minimal user interaction and exceptionally effective for 

segmenting the breast region. The use of multi-state CNNs 

reduces the false segmentations on the images due to the artifacts 

caused by noise, intensity inhomogeneity and partial volume. 

We hope that this algorithm will facilitate computer aided breast 

examinations for density assessment and lesion localization.  
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