
 I

EE 491-492
Spinning Display Project

Ali ALICI

Funda Kubra CİMİLLİ

Cengiz ÇOKAY

Sefa DEMİRTAŞ

Yusuf YİĞİT

Submitted to : Assist. Prof. Şenol Mutlu

 Prof. Avni Morgül

 Assist. Prof. Arda Deniz Yalçınkaya

 II

ABSTRACT

 A spinning display is a device that creates a stable image which is
constructed by a stick turning around its centre which is filled with LEDs. By this way,
using limited number of leds, we can construct an image in the form of normal
displays. As far as the conventional LED displays are concerned, the revolutionary
approach pursued by this type of display can be noticed remarkably. This
mentioned revolutionary approach may be described as following; in conventional
displays, even in LCD’s, each pixel is defined as a hardware pixel. In our display
approach; we have 2 coordinate axes: one of them is r; which is implemented
physically and the second one is θ which is implemented virtually. In our display, the
resolution principle is totally different but for comparison, a total number of 24*pi*16
virtual pixels can be created by only using 16 pixels1. In this project, we implemented
the general idea of spinning displays using digital components and a DC motor. The
finalized project consists of 48 LEDs turning around an orbit and creating a constant
24-bit colored image. The colored image is created by using three LEDs (red, green
and blue) for each circle in r dimension. Developed as a graduate project, this work
is performed as an experiment to see this interesting idea in work and allowed
applying many tools together. In this report, we explain each step of this design in
detail.

1 The details of this calculation will be provided in subsequent chapters.

 III

TABLE OF CONTENTS

ABSTRACT .. II

TABLE OF CONTENTS..III

CHAPTER 1 ..- 1 -

Introduction ...- 1 -

1.1 Introduction... - 1 -

1.2 Objectives ... - 2 -

1.2.1 High Resolution in a Small Area .. - 2 -

1.2.2 Full 8 bit intensity control .. - 2 -

1.2.3 Consistent view without flicker .. - 3 -

1.2.4 An interesting and attractive model .. - 3 -

1.2.5 Brighter Display .. - 3 -

1.2.6 Wide Viewing Area ... - 3 -

1.2.7 Higher Refresh Rates – No Flicker ... - 3 -

1.2.8 Smoothness vs Pixel Based Display .. - 3 -

1.2.9 Contrast – Color Depth ... - 4 -

1.2.10 Cheapness ... - 4 -

CHAPTER 3 ..- 15 -

Circuit Operation ..- 15 -

3.1 Internal Read Controls .. - 16 -

3.2 External Write Controls .. - 17 -

3.3 Multiplexer .. - 17 -

3.4 Counter .. - 17 -

3.5 Decoder... - 18 -

3.6 RAM .. - 19 -

3.6.1 Ram operation while reading ... - 19 -

3.6.2 Ram operation while writing ... - 21 -

3.7 Buffer .. - 21 -

 IV

3.8 Parallel Port ... - 23 -

4.3 Communication with the device – Parallel Port interface - 38 -

4.3.1 Writing Controls ... - 38 -

4.3.2 Program for Data Transfer .. - 40 -

CHAPTER 5 ..- 43 -

5.1 Power Transmission .. - 43 -

5.2 PCB Design .. - 46 -

CHAPTER 6 ..- 54 -

6.1 Why is Motor Control Needed? ... - 54 -

6.2 Linear Voltage Motor Control .. - 54 -

6.3.1 The Infrared Receiver and Infrared LED ... - 59 -

6.3.2 The Counter .. - 62 -

6.3.3 The Microcontroller ... - 62 -

6.3.4 The Digital to Analog Converter.. - 63 -

6.3.5 The Power Mosfet... - 64 -

6.4 Conclusion .. - 65 -

CHAPTER 7 ..- 67 -

Cost Analysis..- 67 -

APPENDICES ...- 69 -

APPENDIX A ..- 70 -

APPENDIX B...- 72 -

APPENDIX C ..- 80 -

APPENDIX D ..- 82 -

 V

LIST OF FIGURES

Figure 1.1: Spinning Display Model……………………………………………………………………1

Figure 2.1 - A rectangular image with pixels and pixel unit areas well-defined………………………..6

Figure 2.2 – Line approximation………………………………………………………………………..6

Figure 2.3 – Box approximation………………………………………………………………………...7

Figure 2.4 – Duty cycle vs observed brightness………………………………………………………...9

Figure 2.5 – Data on LEDS and corresponding PWM………………………………………………...11

Figure 2.6 – Important LED characteristics……………………………………………………………11

Figure 2.7 – LED driving circuit………………………………………………………………………12

Figure 2.8 – First LED driving circuit tried in our project…………………………………….………12

Figure 2.9 - Spice results for the first driver circuit……………………………………………………13

Figure 2.10 - The second configuration to drive LEDs……………………………………………..…13

Figure 3.1: Block Diagram of the Circuit…………………………………...…………………………15

Figure 3.2: Location of RGB LED groups on the PCB………………………………………………..16

Figure 3.3: Decoder truth table……………………………………………………………...…………18

Figure 3.4: RAM and Buffer………………………………………….……………..…………………19

Figure 3.5: RAM functional description………………………………………….……………………19

Figure 3.6: 74HCT541 function table………………………………………………………….………20

Figure 3.7: RAM and buffers for first LED column ………………………………………………..…22

Figure 3.8: Counter first bit and its complement….………………………………………...…………22

Figure 3.9: Pin Assignments…………………………………………………………...………………23

Figure 3.10: Port Assignments………………………………………………………………..…..……24

Figure 3.11: Parallel port at computer side ……………………………………………..………..……25

Figure 3.12: Previous Oscillator Circuit …………………………………………..………………..…25

Figure 3.13: New oscillator circuit ………………………..…………………………..………………26

Figure 3.14: Trying the counter operation …………..……………………………...…………………26

Figure 3.15: Example usage of infrared detector …………………………………...…………………27

Figure 3.16: New configuration for infrared detector circuit ……………………...………………….28

Figure 4.1- The illustration of misalignment of turning LEDs with stationary pixels……...…………29

Figure 4.2- Cartesian –Polar conversion……………………………………………………….………32

 VI

Figure 4.3 – Polar image example for 16 LEDs…………………………………………….…………32

Figure 4.4 – Data as seen in the RAMs for 16 LEDs………………………………………….………33

Figure 4.5: Combining trains for elements of two consecutive sets of LEDs …...……………………34

Figure 4.6: New data hierarchy in one of the three RAMs ………………….…...……………………36

Figure 4.7: RAM functional description ………………………………………………………....……36

Figure 4.8: Writing without close control of WE or CS………………………………………….……36

Figure 4.9: Timing Waveform of Write Cycle (WE Controlled) ……..………………………………37

Figure 4.10: Timing Waveform of Write Cycle (CS Controlled)…….…..……………………………37

Figure 4.11: Counter Clocks and WE control implemented ……………..……………………………39

Figure 4.12: Parallel Port Data Transfer GUI…………………………………….……………………40

Figure 5.1: First planned Power Transmission Design(It could not be realized)……………...………41

Figure 5.2: First PCB………………………………………………………………..…………………42

Figure 5.3: Power Transmission Design Implemented on Motor………………………………...……42

Figure 5.4: LED is turned on, but rotation has net started yet …………………………………...……43

Figure 5.5: LED is turned on and rotation started……………...………………………………...……44

Figure 5.6: Location of RGB LED groups on the PCB………...………………………………...……46

Figure 5.7: Top layer of PCB…………………………………...………………………………...……46

Figure 5.8: Bottom layer of PCB……………………………….………………………………...……47

Figure 5.9: Whole PCB with both TOP and BOTTOM layers…………………………………...……47

Figure 5.10: Technical Drawing of Test-Bench …………...…………………………………….……49

Figure 5.11: Front View of our Test-Bench …..49

Figure 5.12: Front View and Dimensions. ……...……………………………………..………………50

Figure 5.13: Side View and Dimensions ……………………………………………..……………….50

Figure 6.1: Block Diagram of the motor control circuit…………………………………………….…52

Figure 6.2: Schematic of the motor control circuit…………………………………….………………53

Figure 6.3: PCB of the motor control circuit……………………………………………………..……54

Figure 6.4: Infrared Receiver ……………………………………..…………………...………………55

Figure 6.5: Speed versus voltage graph(measured with sensor) ………………………………………56

Figure 6.6: 40 kHz. Signal circuit ………………………………..……………………………………57

Figure 6.7: Digital to Analog Converter ………………………………………………………………59

Figure 6.8: Saturation Characteristics of the Power Mosfet ……..……………………………………60

 VII

Figure 6.9: Speed versus voltage graph(measured with stroboscope) ………………………….……..60

Figure 6.10: Latest PCB of the Motor Control Circuit…………..……………….……………………61

Figure 6.11: Motor Control Board…………………...…………..……………….……………………63

Figure A1: Failure of a copper conductive strip due to electromigration, viewed with a scanning
electron microscope. ………………………………………………………………..…………………66

Figure C.1: a sample of BLDC…………………………………………...……………………………75

 - 1 -

CHAPTER 1

Introduction

1.1 Introduction

“Spinning Display” is a general name for the type of displays which create
images using one or small number of columns of LEDs placed on a plate. The plate is
attached to a motor which will cause its turn around a circular orbit. By this way, the
LEDs turning around this orbit will create an image for human eye, using the fact that
the human eye is not able to clearly distinguish movements beyond a particular
frequency.

There are some examples of these type of displays created by both hobbyists
and commercial companies, but our project has a more complete and different
approach in mind. First of all, most of these examples have no led intensity controls or
sophisticated color creation. In fact, this makes them incomparable to our project,
which has both intensity controls for each led and 24-bit color creation. In some
sophisticated commercial products, we see sharp led positioning controls and very
good color schemes, but actually they have plates turning around the orbit which is
perpendicular to itself. By this approach, they create a 360 degree view in contrast
to our display which has a flat view and different sized pixels.

Our “Spinning Display” consists of LEDs on a plate turning around an orbit to
create 24-bit colored display. In the first semester of our project, we implemented a
16 LED grayscale version of our project, and this semester we designed a 48 LED 8-bit
colored version.

Figure 1.1: Spinning Display Model

As far as the conventional LED displays are concerned, the revolutionary
approach pursued by this type of display can be noticed remarkably. This

 - 2 -

mentioned approach may be described as following; in conventional displays, even
in LCD’s, each pixel is defined as a hardware pixel. If you want to design a 1024*768
display, you have to use 1024*768 LEDs. However, in our display approach we have
2 coordinate axes: one of them is r; which is implemented physically and the second
one is theta which is implemented virtually. In our display, the resolution principle is
totally different, but for comparison, a total number of 24*pi*16 virtual pixels can be
created by only using 16 pixels2.

The project is also multidisciplinary which gave us the chance to facilitate the
experience derived from the courses we took. Actually we can present the
disciplines involved in this project as follows:

• Electronics: To drive the LEDs and to provide necessary voltages

• Digital Design: To provide the interoperatibility between various digital
ICs and design the digital system.

• Image processing: To convert the cartesian coordinates to polar ones.

• Digital Communication: To transfer the data from the computer to the
device

• Software : To provide the software backend for the communication
and processing

1.2 Objectives

Our main objective was to create a low cost display with a different
approach to reach the standards from a different way. The LEDs, being versatile
lighting devices are used in this design which we expect to perform equal or better in
some respects compared to conventional displays. The following objectives were set
at the start of the project:

1.2.1 High Resolution in a Small Area

We are using to use 16 LEDs for each color in the project. Our LEDs have

1.0mm x 0.5mm dimensions and there is 2.1mm spacing between neighboring LEDs.
The LEDs are placed so that they create a screen that has a radius of approximately
33mm. It may be considered as a tiny screen but the pixels at the outermost row will
have pixels only as big as a led and we will have smaller and smaller pixel sizes as we
progress to the interior. In this respect, the overall screen is to be a high resolution one
which we expected to see the image transmitted to it clearly.

1.2.2 Full 8 bit intensity control

8 bit intensity control objective was set since the beginning of the project.

Since that time, we always progressed without changing this. Currently, we use 48
LEDs, all of which are driven by 8 bits. Their intensity will be controlled by our circuit on
the plate using Pulse Width Modulation. We expect our PWM implementation not to
cause any problems with intensity control because we are implementing it directly
into the RAM – counter combination which is faster than conventional LED drivers.

2 The details of this calculation will be provided in subsequent chapters.

 - 3 -

1.2.3 Consistent view without flicker

Another specification that is not changed from the start is the speed of the
motor, 3600 rpm, which directly effects the refresh rate, hence the flicker. So, we are
setting our motor to rotate at 3600 rpm, which will give us a refresh rate of 60Hz,
which is considerably higher that human flicker detection frequency.

1.2.4 An interesting and attractive model

In the attractiveness side, we wanted to have a display with an appealing

design. This objective is more important for us than what it was in the previous term,
so we made significant progress in this, which we explain in the next chapters. The
design will give the people and also us the first impression about the project, so we
are tried to create something interesting and attractive

1.2.5 Brighter Display

A brighter display is at most times desirable. We try to get the best from our
displays at sunlight. Using the intrinsic brightness of LEDs, we expected that our
display has a brightness higher than most of the displays. Our drawback here is we
are using time division which will also divide the time that the eye is met with the light
from a led. We saw the brightness of the LEDs in previous design, so we now have an
idea of their intensity. Actually, it seemed pretty much enough for our needs. What
we changed in our design gave us more time division, so we expect more
diminishing of intensity, but also there are more LEDs now.

1.2.6 Wide Viewing Area

In everyday life, we usually share one display with many people, like we do in

watching TV. In the areas where more than one people sitting close to a display are
present, we expect from a display to be viewable from different viewing angles.
Another design concern is, as expected viewing area. The LEDs we use have viewing
angles as high as 150 degrees, so we will try to achieve wide viewing angles with
these leds. The moving of LEDs may spoil a perfect experience, but we will try to
reach considerable viewing areas.

1.2.7 Higher Refresh Rates – No Flicker

One of the problems of CRT displays that LCD displays solved was the
refreshing problem. Physically, we seem to have a serious problem here. Our LEDs are
always moving, and at every turn, we refresh all the points. Our motor will have a
limited speed, so we will try hard to optimize it for a better display. We think that no
flicker will be detected, but still the eye will be tired looking at our screen. Actually
that was the case with 60Hz CRT screens. We plan to turn the motor at 3600rpm,
which corresponds to 60Hz operating frequency.

1.2.8 Smoothness vs Pixel Based Display

We always talk about pixels when we discuss about cameras and displays.
Actually, we have an advantage here because we have no distinct pixel sizes at the
axis we are rotating over. We expect that it will give the eye a more continuous view,

 - 4 -

but the results may be different. Our objective is to use this interesting fact to achieve
a smoother view. We can also make the pixel changes as frequent as we want.

1.2.9 Contrast – Color Depth

Color Depth was an objective we could not achieve in the previous semester.
In this semester, it entered our short term objective list. Actually, our current design
includes a 24 bit color approach with red, green and blue LEDs, each driven by 8
bits. This will create a true color scheme, which will, if appropriately designed give us
a perfect color. In the contrast, we have a black that can be called “pure”. It is
because we do not light the LEDs while creating the black color. It will give us a very
high contrast ratio, so one of our aims is to use this fact as an advantage.

1.2.10 Cheapness

One of the objectives when we started was cheapness. We thought about
reducing the number of pixels as a price advantage, but it seems that we have
some problems here. We tried hard to keep the project cheap, but some
unexpected factors seemed to block us. To give an example, due to the nature of
the materials of LEDs, blue LEDs are expensive compared to others. If we add the
costs of circuit elements, exterior design, PCB building and so, we think there are
problems. But, as we said earlier, we always tried hard to keep the cost as low as
possible.

 - 5 -

CHAPTER 2

Led Driving – Timings – PWM

2.1 A new resolution concept

Resolution (or spatial resolution) is defined as “A measure of the accuracy or
detail of a graphic display, expressed as dots per inch, pixels per line, lines per
millimeter, or any other method.”3 However this concept is rather perceived as the
more samples taken from a graph, the better its details are visualized. Dividing an
image into more pieces and justifying each piece will give more details as the bigger
number of pixels will share the task of identifying the image.

In conventional cartesian images, this can be understood easily. Here, no pixel
intervenes the area that should be represented by another one and all the
rectanglular image is spanned by all pixels, i.e. there is neither overlap in the
“working area” of pixels nor any part of the image is left unrepresented. To give
qualitative feeling for resolution, we can use the following approximation:

A
1

Pixels ofr Area/Numbe Total
1

area Total
pixels ofNumber Resolution === Eq (2.1)

where A is the unit area for a pixel (and could be the area of a LED used in a
rectangular unspinning display as in Figure 2.1). As it can be easily seen, it is rather
easy to to define a unit area for the rectangular image case. However the discussion
of resoltion is not as easy with the spinning display because

• There are not as many pixels as the rectangular case to span all
the image and the pixels are actually “in a rush” to span the rest of the image
by moving very fast.

• There is not a constant unit area that can be defined as above
because the areas spanned by LEDs residing on different radial distances
differ as a result of rectangular motion.

However we can define another concept of resolution that is as close to the
above as possible. This time resolution is not the measure of how well the details are
observed but the measure of how “not-blurred” our resulting image is and how
equally the radially displaced points are displayed. To put it in another way, we will
accept that we have a good resolution if we can achieve a slightly blurred vision
due to the persistence of the data from the previous position of the column of LEDs
and slightly different areas represented by each LED. The former, at least, clearly
agrees with our discussion above about the “overlap of working areas” and the
latter with our desire to display everywhere with equal quality. We want to minimize

3 answers.com

 - 6 -

the difference of areas represented (spanned) by the near-center LEDs and near-
edge LEDs (i.e. making the ratio of areas represented as close to unity as possible).

Figure 2.1 - A rectangular image with pixels and pixel unit areas well-defined

The above-developed measurement of A
1

 for resolution is still valid here but

as mentioned before it stands now for how “not-blurred” our resulting image is and
how equal are these A’s. For each of these qualifiers, we defined a criterion as
below:

Length Tangential Original
length spannedly Tangential amount Blur = Eq (2.2)

anotherat area Spanned
pixel oneat area Spanned Inequality Area = Eq (2.3)

As it can easily be seen from above that the blurring can be decreased by
decreasing the radially spanned length and area inequality can be decreased by
increasing the origina area. These concepts will be understood easily below.

2.1.1 Line (widthless) approximation for LEDs in radial direction

Although this approximation is unrealistic, it helps understand the nature of the
spinning display and the concepts of spanned area and length with simplifying the
mathematics. Please note that in this section and the next section, the LEDs will be
assumed to have been placed with no gaps in between for the sake of simplicity.
The ultimate result can be modified by replacing the height of a single LED with
height plus the gap in between.

 - 7 -

Figure 2.2 – Line approxiamtion

In Figure 2.2, the line approximation is illustrated. Δh is the height of an
individual LED and the area spanned by the nth LED is,

θθ ΔΔ=ΔΔ= 2
n)(A hnhrn Eq (2.4)

where hnrn Δ= . The Δθ here means the angle spanned during the time

that the data on the LEDs did not have time to refresh. On the other hand, the
tangentially spanned length is given by

θθ ΔΔ=Δ=Δ hnry nn Eq (2.5)

Since the widthless approximation for LEDs remain an original LED area of zero
and original tangential length of zero, the equations of (2.3) and (2.4) are infinity for
the worst case of comparing the outermost LED (say we have m LEDs) where

θΔΔ= 2)(hmAm to the innermost LED 00 =A and

θθ ΔΔ=Δ=Δ hmry mm .

∞=+ΔΔ= 0/)0(casefor worst amount Blur θhm

∞=++ΔΔ=)00/()0)((2
casefor worst inequality Area θhm

However, as mentioned already, this approach was unrealistic and thus we
needed another approach as below.

2.1.2 Box approximation for LEDs in radial direction

In contrast to the widthless approximation, our LEDs now are considered as
boxes with widths of Δb and height of Δh as before.

 - 8 -

Figure 2.3 – Box aproximation

Although in Figure 2.3 the edges of the boxes used to model LEDs seem to
perfectly overlap between the drawn circles, which is only valid for small angle
approxiamtions, which is one reason of our selecting high rpms. For this new case:

hbhhbhrn ΔΔ+ΔΔ=ΔΔ+ΔΔ= θθ 2
n)(n A Eq (2.6)

bhnbry nn Δ+ΔΔ=Δ+Δ=Δ θθ Eq (2.7)

and we can easily deduce that

S
πθ 2=Δ Eq (2.8)

where S is the number of samples taken in one turn. This S will correspond to
the number of columns in the polar image later.

Inserting these to the equations (2.2) and (2.3) will give more insight about the
necessary precautions to be taken to prevent blurring and area inequality in the
case of m LEDs:

bShmbbhm ΔΔ+=ΔΔ+ΔΔ= /21/)(casefor worst amount Blur πθ Eq
(2.8)

bShmhbhbhm ΔΔ+=ΔΔΔΔ+ΔΔ= /21/))((2
casefor worst inequality Area πθ

Eq (2.9).

It is really interesting to see that the worst case values of blur amount (which
happens at the outermost LED) and the area inequality (which happens when we
compare the outermost LED and the innermost LED assuming the latter lies at r=0) are
equal. Beyond that, these two equations give us a hint about how to place our
rectangular LEDs more efficiently. Since we want to pull these values as close to unity

 - 9 -

as possible, Δh should be small and Δb should be big, dictating that the LEDs should
be placed such that their short sides lie on the radial direction. We placed our LEDs
accordingly.

2.2 Refresh rate and the operating rpm

Since we want to obtain a flicker-free image in our spinning display, we have
to spin it faster than the human-eye response time. Normally, human-eye can
distinguish the changes occuring at less than 10Hz, but after this frequency it
perceives a continuous image yet with flickers until a certain frequency. This is
different than the frame rate used to describe how many times the image on the
screen can change. In movies, the frame rate is 24Hz but each frame is refreshed
twice before getting to the next frame. This remains 48 transitions per second but
since it is higher than the human response time about 5 times, the eye cannot see
the transitions4

A good illustration of this problem was implemented in our lab. We conducted
an experiment with a LED and a square wave generator. As the current in the LED
was changed at a few Hz, the flickers were visible. The LED seemed to be on very
brightly and then was turned off. As we increased the frequency beyond 10Hz, the
transitions were even harder to perceive and there were no flickers above 20Hz. At
this time, the LED did not seem to be as bright as we saw it at first because now the
eye was automatically averaging the dark and bright periods. At this point we
changed the duty cycle of the square wave and observed that we did not see
longer bright and shorter dark (for duty cycles greater than 50%) intervals or the other
way (for duty cycles less than 50%). Rather we observed a brightness change in the
LED. This gave us an idea that we could use Pulse Width Modulation in order to
obtain brightness thus grayscale control of our display.

Figure 2.4 – Duty cycle vs observed brightness

4 http://www.answers.com/topic/flicker-screen

 - 10 -

Pulse width modulation (PWM) is a modulation technique that generates
variable-width pulses to represent the amplitude of an analog input signal. In our
case this analog input signal is the signal we are driving our LEDs with. This method is
relatively easy to use due to its digital nature composed of on-off signals. The signal is
adjusted to be high for a certain (and desired) number of clock pulses and low for
the remaining pulses. When this is done fast enough as discussed above, this is
perceived as a continuous brightness. For example if we want an 8 bit depth in color
(or brightness if we are talking about grayscale), we have to divide one period of the
square wave coming from the generator into 28 = 256 PWM clocks. For a moderate
brightness, the duty cycle is 50% meaning that 128 “ones” and 128 “zeroes” are sent
in order. For full brightness, the duty cycle should be 100% meaning that all 256 bits
sent are “ones” (DC). The other duty cycles correspond to different brightnesses as
shown in Figure 2.4.

To choose for the right rpm for our spinning display, we have to consider many
factors as discussed in the previous section and in this section. From equations (2.8)
and (2.9), we can see that the as the sampling rate in one cycle (S) increases, the
blurring and area inequality decrease as desired. We decided to have as many
samples as not to have one sample persist more than a maximum tangentially
spanned length of Δb, the width of a pixel. In other words our samples should be
taken so often that the outermost LED will persist at most as much as its width. This is a
very harsh restriction on the refresh rate, thus the system clock, not to go below a
certain value. For the case of m LEDs,

mbhmS ππ 2/)'(2 =ΔΔ= Eq (2.10)

where Δh’ is the sum of the pixel height, Δh, and the gap between LEDs, Δg.
In our case Δh’ and Δb are the same (both 1mm) and cancel above. For a 16 LED
case, S becomes 100, but this is the lower limit for it. We chose even a bigger number
of samples, 300, for the sake of decreasing blurring and area inequality in equations
(2.8) and (2.9) as the optimum case is infinity for S.

The sampling rate shoud not be confused with our refresh rate, which we
should choose around 25Hz. We chose this refresh rate as 25Hz as in most movies.

Considering all these factors, we can now determine the frequency that the
data on each LED are going to change. Think of a LED in a certain position
displaying a certain brightness. This brightness should persist until the next sample is
taken, which is 1/300 of the time it takes for one total cycle of the spinning display,
i.e. 1/25 seconds. The result is that the data should change after (1/25)/300 = 1/7500
seconds (133 microseconds). This value corresponds to the period of the square
waves shown in the figure for duty cycles and brightness. As we discussed before, for
an 8 bit brightness control, the PWM that will implement this control should be 256
times faster than this rate. The period of PWM, thus, should be 133 us/256 = 521
nanoseconds. This corresponds to a frequency of 1.92 MHz for pulse width
modulation. However it should be kept in mind that we have to keep this frequency

 - 11 -

twice as high because we are high multiplexing the outputs of the RAMs. In the
previous design for gray scale display, one RAM drove one set of eight LEDs. So, 1.92
MHz was enough for that operation. However to keep the number of RAMs low, we
decided to switch the output of each RAM to the next set of 8 LEDs in the 16 LED row
each time. Meanwhile the buffers will be enabled and disabled according to the
predetermined order and will be in harmony with the switching RAM outputs. This
results in a need for the frequency to be twice of the calculated value, namely 3.84
MHz. We are using 4 MHz clock frequency as the closest value.

Since 4 MHz is a very high frequency for most circuit components, it should be
paid more attention. However the biggest problem seems inherent in the response
time of buffers used to drive the LEDs with the data coming from the RAMs. But it is
important to note that the PWM means a train of “ones” and then another train of
“zeroes” and the frequency of 4 MHz will correspond to the clock generating these
ones and zeroes. The actual frequency that the buffer will be working is much smaller
than this because there will be only one transition from 1 to 0 every 133 microseconds
and this effective frequency is around 1/133us = 7.5 kHz only. The other problem is
that the microcontroller could not refresh the circuit that often since it took many
intructions to do this task. Although we decided not to implement the circuit with a
microcontroller, we have to process the image data so that it comes to the RAM in
the form of train of “1”s and “0”s representimg PWM. This is done in Matlab as will be
explained later in Chapter 4.

Figure 2.5 – Data on LEDS and corresponding PWM

2.3 Driving the LEDs

The LEDs have the following specifications:

 - 12 -

Figure 2.6 – Important LED characteristics

We are planning to operate our LEDs at 20 mA, which is also the rated current,
for a reasonable luminance. This requires a 1.95 V voltage drop on the LED as seen in
the first graph in Figure 2.6. We can model the LED as a resistor at this voltage under
constant operation mode because the rest of the circuit sees this component as a
balck box with a 1.95 V voltage under 20 mA current. The equivalent resistance is
1.95V / 20 mA = 97.5Ω ≈ 100 Ω. Considering a 5V supply voltage, the voltage divider
that will remain a voltage of 1.95 V on the LED can be implemented as in Figure 2.7.
Here, the 150 Ω is selected as it is the approximate solution to the following equation:

R+= 100
100595.1 R≈156 Ω

Figure 2.7 – LED driving circuit

Previous designs for LED driving circuits:

 - 13 -

Before we unemployed the microprocessor, we decided to drive the LEDs with
a transistor circuit using the BJT as a voltage controlled switch and the
microprocessor output as the input voltage to the switch. The first system we tried
was as follows:

Figure 2.8 – First LED driving circuit tried in our project

The Spice simulation results with R=120Ω at 20 MHz remained the following
current profile on the LED. 120 Ω was used because the LED specifications were not
the same as our actual LEDs but was the necessary resistance to obtain 20 mA on
the simulated LED model. This would just give a feeling about the circuit operation.

 - 14 -

Figure 2.9 - Spice results for the first driver circuit

The above simulation was done at 20MHz because we needed very high
frequencies to do Pulse Width Modulation on the LEDs turning with enormous speeds
and refresh rates. This frequency is an upper bound and still gave good results.
However the voltage on the LED did not seem to have time to fall to zero when the
switch was open because of inner capacitances. This is not a problem since the LED
would not be on without current and current successfully drops to zero when the
switch is open. The main problem is that this circuit doesn’t have a base resistance
that will protect the base of the transistor. Also we need to operate the transistor on
the edge of saturation to prevent excess charges for the quick response of switch at
high frequencies. These accumulated to a new idea of LED driver, which was more
successful at the lab trial:

Figure 2.10 - The second configuration to drive LEDs

This second configuration provided the same good simulation results and
additionally protection to the base. However, the β was measured around 25 in
actual experiment and 82 in simulation, which are greatly different but all show we
are in saturation region as expected. This difference may stem from different
transistor parameters: We used in the lab BC547B but in simulation one of the CA3086
package parameters. However the results in the lab were not as perfect as Spice
simulations because we conducted the experiment on the breadboard which was
not suitable for high frequencies. In fact, the waveform was distorted unacceptably
after frequencies beyond 2 MHz.

 - 15 -

CHAPTER 3

 Circuit Operation

We start with the block diagram of the circuit:

Figure 3.1: Block Diagram of the Circuit

The basic operation of the circuit is as follows:

Multiplexer selects the bits to control the counter from the internal controls
and external controls. The RAMs are controlled by bits from both decoded external
write controls and internal read controls. We have a Read/Write selector switch on
the circuit so that when the circuit is in WRITE (high) position, the data coming from
the parallel port is written to the RAM. When the switch is in READ (low) position, it
means that the display will spin and the counter starts to count in the speed of
internal oscillator so that the data will be taken off the RAM to create the image
stored in it. Buffer is used so that the intense power needs of LEDs are served by the
buffer instead of the RAM.

We should note here that the above figure and operation is a very simplified
version of circuit operation. In fact, there are three groups of LEDs (red, green and
blue) which are separately controlled by different RAMs and buffers. Also, one should
think about the orientation of LEDs to understand the circuit operation. We have
three columns of 16 LEDs which are separated 120 degrees apart. In each column,
LEDs are placed with 2.1mm spacing from their centers on `r` direction. Spacing
width originates from PCB and resolution specifications. Each column is placed 120
degrees apart. Lengths of LEDs are 0.5mm in `r` direction, 1mm in `θ` direction.

The following figure illustrates the design principle:

 - 16 -

Figure 3.2: Location of RGB LED groups on the PCB.

The following sections analyze the circuit operation in detail:

3.1 Internal Read Controls

These controls are actually four controls on the circuit:

a) Internal Clock

Our device will spin at a constant angular velocity so that a constant image is
displayed. Corresponding to this angular velocity, as discussed above in the Led
driving – Timings section, we will have a pixel time. The pixel time will be divided into
256 PWM modulation cycles and this speed corresponds to our data transfer speed.
This constant speed is provided by the internal oscillator on the circuit, which
oscillates at a specific frequency. Counter increments using this oscillation when the
device is in READ condition. This continues to next spin of the display until counters
are reset by the Infrared Sensor. The internal clock is selected by the multiplexer
when the circuit is in READ position.

b) Infrared Sensor

When one spin of the device is completed, the counters should be reset so
that the data starts from the beginning of the image. Infrared sensor senses the
infrared wave coming from the hole over the back PCB and instantly resets the
counters when in read position. It will be explained in detail in the motor control
chapter because same sensor is also used for motor speed control. The infrared
sensor is selected by the multiplexer when the circuit is in READ position.

c) RAM 1-2-3 Chip Select, Output Enable and Write Enable bits

In read condition, the RAMs should be always on and they should have their
output enabled so that the device outputs a continuous image. Using this idea, Chip
Select bit is directly connected to the ground, which sets the RAM always on and
Output Enable bit is connected directly to READ/WRITE selection switch, which is
always low (output enable active) when the circuit is in READ position. Write Enable

 - 17 -

bits of the RAMs are not controlled by these bits and WE overrides OE operation if it is
low. We should note here that, unlike previous designs, multiplexer is not used for
selecting RAM controls.

3.2 External Write Controls

As seen from their name, these four controls are external to the device; they
are connected to the control bits of the parallel port. These data bits are prepared
by the software interface over a computer and fed to our device. They consist of
four control bits from parallel port. They are selected only when the circuit is in WRITE
condition.

a) External Clock

The circuit still needs a clock to control its operation when it is in WRITE position,
changing addresses of the data to be written on the RAMs. External clock is supplied
by one of the parallel port bits and it is fully synchronized with the data bits coming
from the parallel port. Its speed depends directly on the computer it is connected to
and we achieved approximately 33 kHz clock speed using a parallel port of a typical
computer5.

b) External Counter Reset

We have two RAMs and we want to write different data to them starting from
their first address. Before writing data to each of them, the counters should be reset.
This job is done by the counter reset bit coming from one of the parallel port bits and
this bit is selected by the MUX when the circuit is in WRITE position.

c) RAM 1-2-3 Chip Select, Output Enable and Write Enable bits

As we said before, the data will be written to the RAMs one at a time. We
have three RAMs, so we should open one for writing while the others are not active.
We use Write Enable bits for this job, which can control the Write cycle of the RAMs. It
will be given in more detail in RAM section. The Chip Select bit is directly connected
to the ground, which sets the RAM always on and Output Enable bit is connected
directly to READ/WRITE selection switch which is high (not active) when the circuit is in
WRITE position.

3.3 Multiplexer

The multiplexer in our circuit is a 4bit 2-to-1 multiplexer and has a part number
74HC157. It has its select input coming from a physical switch on the board which
tells the multiplexer if the device is in READ or WRITE condition. As previously stated, if
the circuit is in READ condition, the two internal read controls are electrically
connected to the output and if it is in WRITE condition, the two external write controls
are connected to the output. The multiplexer basically gives the control of the
counter to the internal circuits or external computer.

3.4 Counter

In the operation of our device, 8-bit Pulse Width modulated data is used to
drive the LEDs. The number of bytes to be stored in the RAMs is 225kilobytes each. So,

5 The tests were conducted on a Pentium 4 – 2.8GHz computer with an MSI 865PE motherboard.

 - 18 -

we needed an 18 bit counter. Since an 18 bit counter is not easily found, we used
two 74hc4040 counters and cascaded them. This allowed us to realize a practical 18
bit counter. The cascading operation is done by connecting the most significant bit
of the first counter to the clock input of the second counter.

The two counters work in both READ and WRITE states. In READ state, they are
incremented by the oscillator in the circuit and reset by the infrared detector. In
WRITE state, they are incremented by a control bit from parallel port and reset by
another pin.

3.5 Decoder

In our latest design, we have three RAMs and they should be controlled
separately during WRITE operation. This requires at least three bits, and if we add the
two bits used for controlling the counter, we need five bits for external control.
Unfortunately, besides 8 data bits, parallel port supports only 4 control bits. This
requires a decoding operation to control the RAMs. At this point, we decided to use
a decoder to decode two bits coming from the parallel port. The fact that only one
RAM is active at a time during writing gave us this opportunity. So, there are basically
four states of RAMs represented by two bits:

1. RAM 1 is on for writing, the others are off.
2. RAM 2 is on for writing, the others are off.
3. RAM 3 is on for writing, the others are off.
4. All RAMs are off.

The decoder (74LS139) has a functional description like the following:

Figure 3.3: Decoder truth table

The first three outputs of the decoder control the RAM as will be explained in
the next section.

 - 19 -

3.6 RAM

We store the PWM data to light the LEDs in three 512Kx8 bit Low Power CMOS
Static RAMs with device number KM684000BL-TI. Each RAM has 8-bit output and
each output directly corresponds to one LED. The problem we faced with this RAM
was that its input and output pins were the same. So, we needed to make sure that
the paths that fed the RAM with data in WRITE position does not interfere with the
READ operation. To overcome this problem, we used a buffer for each RAM with part
number 74HCT541 before the data from the parallel port enters the input of the RAM:

Figure 3.4: RAM and Buffer

These buffers are on when the switch is in WRITE position and when the circuit
is in read position, their outputs are high impedance.

We can divide RAM operation into two main sections, and we will analyze
them in detail:

3.6.1 Ram operation while reading

When the spinning display does its display operation, RAMs continuously feed
buffers with the data for corresponding LEDs. As the device rotates, counters are
incremented automatically and they change the address of the RAMs to be read. In
the last version of our circuit, each RAM drives 16 LEDs and since the RAMs have only
8 outputs, a time multiplexing was required. To achieve this time multiplexing, we
connected two buffers at the output of each RAM and made sure that only one of
them is active at one read cycle. In this scheme, even addresses of the RAMs store
data for the first 8 LEDs, and odd addresses of the RAMs store data for the second 8

 - 20 -

LEDs. In even cycles, the second 8 LEDs are not lit, and the opposite for second 8
LEDs.

Besides time multiplexing, we had to control the RAMs so that they are open
for data output in read cycles. To achieve this operation, we first needed to analyze
the RAM functional description:

Figure 3.5: RAM functional description

As we see above, RAM has three control bits. In READ state, we selected to
use:

CS = L, OE = L, WE = H

Our existing design used CS bits for controlling RAM operation. In that case WE
and OE bits were connected as inverted version of each other and they
interchanged bits as we go from the read mode to write mode. In our new design,
instead of the CS bit, we use WE and OE bits. Our CS bit is directly connected to
ground now. So, our RAM is always in active operation. The WE bits of the RAMs are
directly connected to decoder outputs respectively. So, they are always high when
the circuit is in READ position because the decoder is not active, hence all of its
outputs are high. The OE bits of the RAMs are connected to the Read/Write switch on
the board, i.e. they are low when the circuit is in read position and high when the
circuit is in write position. So, we can achieve READ operation when the circuit is in
READ operation.

With the above method, we were assured that the RAM will be in a READ
operation, but the problem was to control write buffers so that their outputs are in a
high-impedance state. We examined 74HCT541 function table:

Figure 3.6: 74HCT541 function table

 - 21 -

We see that the high impedance state is achieved when one of the OE bits
are high. We connected both of them together to the inverted version of
READ/WRITE switch so that when the circuit is in WRITE mode, the buffers are on, else
off.

3.6.2 Ram operation while writing

When the parallel port connector is connected and the device is in WRITE
mode, RAMs should take the data that is coming from the parallel port. In this state,
the controls bit should be in the following state:

CS = L, OE = H, WE = L

We have previously explained that the OE bits of the RAMs are connected to
the Read/Write switch on the board, i.e. they are low when the circuit is in read
position and high when the circuit is in write position. The CS bits were connected
directly to ground. The WE bits are used to control the writing cycle.

From the parallel port, we take two bits to control the operation of the RAMs.
From these two bits, we derive four states of the RAMs using the decoder as
explained in the decoder section. The first three decoder outputs are connected to
the WE inputs of the RAMs respectively. They are on when there happens a write
operation on the corresponding RAM.

The details of this cycle will be explained in detail in the communication part
of the report. But the point is, the write cycle is controlled by WE input of the RAM
using parallel port bits.

3.7 Buffer

The RAMs output the data suitable for our LEDs, but the problem is they
cannot drive the LEDs due to their low resistance. To achieve proper driving of LEDs
at 20mA, we decided to use two buffers after the RAM. The part numbers of these
two buffers are 74HCT541, the same as the above explained write buffers.

Also, the addition of extra colors, hence extra LEDs required us to make
changes in the circuit. If we think about existing scheme, where one RAM drives 8
LEDs, we should have used 6 LEDs to design the new circuit. That was both expensive
and required a very complex circuit if we think of the problems we faced about the
RAMs in previous PCB design. So, we decided on using a total number of 3 RAMs,
each driving LEDs of one color. The 8 data outputs of the RAM will be shared among
the inputs of 16 LEDs in a time division multiplexing manner.

These buffers perform time division multiplexing using the principle that even
addressed data of the RAM is only delivered to the first 8 LEDs by the first buffer and
odd addressed data of the RAM is only delivered to the second 8 LEDs. The buffers
have two output enable bits. To open the buffers, both of them must be in low state.
One of them is connected to the first output bit of the counter (inverted version for
the second buffers), so it changes in each cycle. The other bit is connected to a
debug switch on the circuit, which opens or closes the output totally.

In each cycle, 24 of 48 LEDs will be receiving data. To achieve this time
multiplexing, we decided to use buffers because:

 - 22 -

1. We already had 3 buffers for driving the LEDs, and we
would need them irrespective of multiplexing because only they
could drive the current hungry LEDs.

2. They had an easy way of multiplexing; their chip select bits
gave us the means of enabling / disabling them easily.

The resulting part of the schematic was like:

Figure 3.7: RAM and buffers for first LED column

We see another buffer at the top, which is on when the circuit is at write
position; hence it loads the RAM with the data to be taken from the parallel port.

 - 23 -

Figure 3.8: Counter first bit and its complement

We see in the above figure that the first bit of the counter and its complement
are taken to the further parts of the circuit. Actually, this first bit goes directly into G1
input of first, third and fifth buffers. The other buffers’ G1 bits are connected to the
complement of the first bit of counters. G2 bits of buffers are connected together
and they are taken to the physical switch on the circuit which is also new in this
design.

3.8 Parallel Port

One of the most important parts of the spinning display project is obviously to
transfer the data to the spinning part. There existed so many ways to realize this
objective such as USB, wireless modules etc. We negotiated about which transfer
method is most efficient and convenient for our purpose, eventually we decided to
use the parallel port which is an inexpensive and yet powerful platform for
implementing projects dealing with the control of real world peripherals. Brief
information about parallel port is given below:

A parallel port is a type of socket found on PCs for interfacing with various
peripherals. It is also known as a printer port or Centronics port. The IEEE 1284
standard defines the bi-directional version of the port. The parallel port, as

 - 24 -

implemented on the PC, consists of a connector with 17 signal lines and 8 ground
lines. The signal lines are divided into three groups:

• Control (4 lines)
• Status (5 lines)
• Data (8 lines)

As originally designed, the Control lines are used as interface control and
handshaking signals from the PC to the printer. The Status lines are used for
handshake signals and as status indicators for such things as paper empty, busy
indication and interface or peripheral errors. The data lines are used to provide data
from the PC to the printer, in that direction only. Later implementations of the parallel
port allowed for data to be driven from the peripheral to the PC.6

Pin, port assignments and an image showed the Parallel port connectors are
given below7:

Figure 3.9: Pin Assignments

6 http://www.fapo.com/porthist.htm
7 http://engr.nmsu.edu/~etti/fall96/computer/printer/printer.html

 - 25 -

Figure 3.10: Port Assignments

Figure 3.11: Parallel port at computer side8

 We used 8 data bits of parallel port to transmit the data which is then written
on the specific address of the RAM determined by counters in the circuit. Also for
Counter Increment, Counter Reset, RAM control bits and receiving data from the
board we needed five another pins. For this purpose Strobe, Autofeed, Init, Select
Input, ACK pins of the parallel port are used. Assignments of pins in our design are
given below.

D0-D7 Data pins Transmitting the data of image

Strobe Counter Increment

Autofeed Counter Reset

Init RAM control data 1

Select Input RAM control data 2

ACK Receiving data from the board

In addition to these 8+5 pins a random ground pin is used for a referenced
ground. We decided to use the original connector for the parallel port for perfect
transfer.

Another important point about parallel port connector is that when connector
is ejected to circuit, circuit pins which are directly connected to the parallel port pins
becomes floating. That is to say that without parallel port pin connection they
become ambiguous inputs. It is an unreliable case obviously. To prevent the harmful

8 http://computer.howstuffworks.com/parallel-port1.htm

 - 26 -

effect of this situation to the circuit, 10MOhm resistances are connected between
parallel port pins at the female connector and ground of the spinning board. Thus
when parallel port is connected to the circuit this situation can not affect the
operation since 10MOhm is a high resistance. And when we disconnect it, these
floating inputs are grounded.The schematic of the design can be found at the end
of the report.

3.9 Oscillator and Infrared Receiver

The infrared detector on the spinning PCB was expected to send a reset signal

through a multiplexer to the counter which stimulates the RAMs with its outputs. On
the other hand, the oscillator was expected to create oscillations that would
stimulate the counter. However this system had many problems in the first design, so
improvements were necessary.

The first improvement was done to the oscillator circuit. We tried to run the
oscillator circuit at 14 MHz, which was well beyond our needs. Before constructing
the old PCB, we set the following circuit on a breadboard:

Figure 3.12: Previous Oscillator Circuit

Normally, a very high resistance is placed on the feedback path of the
oscillator, which is parallel to the crystal oscillator. However since this was a very high
frequency to work on a breadboard which has many parasitic capacitances, we
had to decrease the equivalent impedance of the capacitive effects by placing a
resistance as small as 1k to this path. This would obviously decrease our gain and the
output will not be actually from 0V to 5V. This circuit worked on a breadboard with a
distorted waveform as expected but still at 14 MHz.

When we set this circuit up on the PCB which has far less parasitic capacitive
effects, the circuit did not give a 14 MHz waveform as expected. We first tried to
change the crystal oscillator and use a 4 MHz sample. This still did not work and the
output waveform was oscillating between 1.4V and 1.8V. Then we tried to increase,
even open circuit the resistive feedback component because we did not need to

 - 27 -

decrease those capacitive effects as we did on the breadboard. The new design
was as follows:

Figure 3.13: New oscillator circuit

This new configuration worked successfully on the PCB. When we understood
our mistake, we tried the 14 MHz oscillator again and it was working also with the
above configuration. However we decided such a high frequency was unnecessary
for us now and we remained with 4 MHz for the previously discussed reasons.

The second fault in the circuit was in the counter. Even though we discarded
the clock path coming from the oscillator circuit (through the multiplexer) and gave
an external clean square wave as input, the counter seemed not working. We
checked the reset input and it was inadvertently high. We pulled this node to ground
and checked the operation again, but it was not working. We understood that the
counter was erroneous and when we changed the counter with a new one, it
counted successfully until we reset it manually.

Figure 3.14: Trying the counter operation

The other improvement was done to the infrared detector. The infrared output
was erroneous and we had to establish the circuit on the breadboard from scratch.
The example application of our infrared detector was as follows:

 - 28 -

Figure 3.15: Example usage of infrared detector

When we established the above circuit, the signal at the output was as weak
as 165 mV. We thought the reason for that is the infrared detector was not that
powerful to compensate a base current as high as Vcc/β(1k). Thus we increased the
emitter resistance step by step to 1M and we saw that every time we increased the
resistance, the output signal was closer to 5V as expected. The output value at 100k
was 3.6V and at 1M 4.4V. We decided that this was enough for our purposes of
resetting the counter and we are using a 1M resistance now.

 The infrared output level was maintained however the stability of the
circuit was not maintained yet. The detector gave an output voltage of 0V when the
base was exposed to 40 kHz infrared radiation. It should have remained at 5V (4.4V)
when the base of the detector did not match the infrared LED. However this was not
the case: The detector was very sensitive to the variations in the environment such as
moving around it, turning down the lights and on again, abrupt changes in the
environment enlightening, etc. Later we found out that some of these actions
caused the power supply to have fluctuations and these caused undesired reset
signals. We overcame this problem by placing a capacitance between the power
supply of the detector and the ground. However there was not much we could do
about the abrupt changes in the environment light level changes because this
corresponds to an impulse at the base which includes all frequencies and of course
the critical 40 kHz. This may not be a big challenge because our infrared will work
mostly isolated from environment enlightening and will not be in much contact with
our LEDs while spinning. The resulting working configuration of the infrared detector is
as follows:

 - 29 -

Figure 3.16: New configuration for infrared detector circuit

The infrared LED that is driving this sensor affected it not just from opposite but
from a perspective. This caused a higher reset time than expected and needed. To
prevent this, we put a tube between the two PCBs. This pipe would behave as if a
waveguide that collects the infrared waves just when the spinning PCBs are passing
opposite the stabilized infrared circuit. Another important point here was to put this
hole far from the center of the PCBs because the same sized pipe would stay longer
if front of the infrared LED and collect “resetting” waves longer than necessary. This is
inherent in the nature of the spinning bodies that the same arc length is spanned in
less time if it is further from the center. The new PCBs are ordered after considering
this fact.

We made a demo of how the circuit resets via this sensor when we are
spinning the display. We mounted the main PCB on the motor and then to the cage
platform. We established the infrared LED circuit on the inner wall of the platform. The
pipe indeed helped the circuit reset just when the sensor is passing right opposite the
LED but nowhere else. This can be used successfully in the last version of the LED.

The last improvement was done on the RAM-buffer connection as discussed
before. Since we are now trying to drive a column of 16 LEDs (each set for one color
of RGB) with RAMs of 8 outputs, we have to drive the first 8 LEDs in the first clock
cycle, then the second 8 bits in the next clock cycle and it goes on like this. When
the first 8 LEDs are driven, the first buffer is enabled to drive the corresponding LEDs.
The same is true for the second 8 LEDs. This configuration decreases the number of
RAMs from 6 to 3, however it multiplies the necessary clock frequency by 2 because
of high multiplexing. When the RAMs are being loaded data from the parallel port,
now we need a demultiplexer to enable the RAM we want our data to be written to.
The demux inputs are connected to ground via high resistances after the parallel
port connection is removed. The new algorithm to write the data to the RAMs is
described in detail in the software section.

 - 30 -

CHAPTER 4

SOFTWARE USED

4.1 A different approach to the spinning image: Polar Coordinates vs Cartesian
Coordinates:

Since the spinning phenomenon is closely related to polar coordinates, it
would be efficient to work in polar coordinates rather than Cartesian coordinates.
Our LEDs will be lit proportional to the values of the pixel values on the gray scale
image. However it would be difficult to determine which values should be used to
light the LEDs when it is a spinning array of LEDs that are trying to sample a Cartesian
image. We should have used complex algorithms to determine the right value of the
underlying pixel(s). Below is an example of the illustration of this problem. Can you or
your processor decide the best value to display in any of the two LEDs shown in
yellow? The unaligned LEDs contact with more than one pixel at a time and with
different overlap ratios. The best value would be the weighted sum of all the pixels in
contact to the LEDs, which will be considered in our proposed algorithm but difficult
to implement in Cartesian coordinates:

 - 31 -

Figure 4.1- The illustration of misalignment of turning LEDs with stationary pixels

To overcome this problem, we decided to use the weighted sum of pixels
idea, however we decided to live “in the same reference system” with the LEDs.
Since the LEDs are moving linearly according to and their paths are easily defined in
the polar coordinates, we transformed the image itself into polar coordinates doing
interpolation in Matlab for the conversion. An example of a Cartesian image and its
polar counterpart are below:

 - 32 -

Figure 4.2- Cartesian –Polar conversion

 - 33 -

The components of the car are shown in both images. The algorithm is like this:

• Go to the center of the Cartesian image
• Draw as many rays as you want going out of the center and

spaced with equal angles. (In the above case 900 sampling rays were taken)
• For each ray, which will constitute a column of pixels in the polar

image, calculate the values of each pixel for each LED by interpolation. (In
the above case, linear interpolation was used)

• Now the problem of spanning the rectangular image with a
spinning LED column reduced to moving the column of LEDs from left to right
in the polar image (which assumes the LEDs will turn in the counterclockwise
direction in the above example).

The black regions on the bottom edge are the points where our LEDs will be
off because more LEDs (more rows in the polar image, each LED resembling a pixel)
were used than the actual image size and those LEDs are redundant in this case.

4.2 Manual PWM in Matlab

Previous algorithm for gray scale:

Matlab’s task is not over with the above discussion. As already mentioned in
the other chapters, PWM clock would be working at a very high frequency, so
creating the necessary train of “1”s and “0”s for the LEDs would be a very difficult
task for any circuit component. Thus, this task is done manually before the data are
sent to the RAMs.

The data hierarchy in the RAMs for 16 LEDs and S=300 samples is shown in the
next two figures. The algorithm for implementing PWM in Matlab manually will be as
follows:

• Convert the image to polar coordinates so that it has 16 rows
(the first 8 rows go to the first RAM and the second 8 rows go to the second
RAM) and 300 columns, which is the number of samples S in our case.

• Each data value in the polar coordinates are converted to train
of “1”s and “0”s and they are written in a text file that the parallel port
program will take and load the RAMs accordingly.

 - 34 -

 Figure 4.3 – Polar image example for 16 LEDs

 - 35 -

Figure 4.4 – Data as seen in the RAMs for 16 LEDs

 - 36 -

New algorithm for RGB and high multiplexing:

Our discussion of trains of 1s and 0s remains valid however after some
modifications. Since a RAM is not driving a single set of 8 LEDs but driving two of
them, each at one clock cycle, the RAM data should be prepared so that in 512
consecutive addresses, it holds the two “trains” of each LED value combined. At the
first clock cycle, the first values are displayed and this corresponds to the first
“wagons” of the combined train, the second clock value calls the second wagons
into play and this goes on. The MATLAB code is written again to accommodate this
change of algorithm.

Figure 4.5-Combining trains for elements of two consecutive sets of LEDs

Another very important point here is that since the sets of 16 LEDs are oriented
with 1200, so the data in the two other RAMs should be delayed by S/3 and 2S/3
positions, where S is the number of positions sampled in one cycle and 300 for our
case. The RAM columns are adjusted to accommodate this delay automatically in
our MATLAB code.

 - 37 -

Figure 4.6- New data hierarchy in one of the three RAMs

 - 38 -

4.3 Communication with the device – Parallel Port interface

4.3.1 Writing Controls

We implemented the coordinate conversion method using MATLAB and we
are ready to transfer the resulting image to our device. We know from the previous
sections that we have four bits to control the circuit using parallel port and eight bits
for data. Two bits were used for controlling the RAMs. In this step, analyzing the
behavior of the RAM is important:

Figure 4.7: RAM functional description

We see that a write operation occurs at the point where both WE and CS are
low. But if we keep them constantly at a low position during write cycle, then there is
the problem of writing to previous or next addresses.

Figure 4.8: Writing without close control of WE or CS

A small delay can cause a problem using this type of writing. Misaligned data
can cause problems and shifts in our image, so we must control WE or CS and close
the RAM for writing during address change. According to the datasheet of our RAM,
there are two ways for control of write cycle:

First one is WE controlled:

 - 39 -

Figure 4.9: Timing Waveform of Write Cycle (WE Controlled)

And the second one CS controlled:

Figure 4.10: Timing Waveform of Write Cycle (CS Controlled)

We selected to connect CS to ground and use WE for control. In WRITE mode,
since the OE bit is the connected to R/W switch, it is always high. In this state, setting
WE bit to low enables write operation and setting WE bit to low disables RW
operations and sets the output of the RAMs to high impedance so that they do not
interfere with buffer outputs when the RAM is not written.

The technique we control WE is that we set WE to high before there happens
a clock transition, namely high to low transition, and to low after the transition is
made. This makes us sure that we do not have problems with writing to wrong
memory location with small delays. We can show our technique as follows:

 - 40 -

Figure 4.11: Counter Clocks and WE control implemented

It is clearly seen that after seeing the clock pulse, we wait some time before
writing. The implementation of our software is to wait for time of duration T after the
clock tick to WE transition, time of duration T for WE in low position and time T after
switching WE to high to next clock tick.

It is also important that we should control two RAMs independently and after
writing the first RAM, after resetting the counter, we should continue to the second
RAM. So, there are actually 3 WE bits, one for each RAM, two being totally of at a
time. Also, after operation, the RAMs should be put back to write position and the
control should be given to internal controls.

We implemented a program in C# to load data to the device and it is
discussed in the next section.

4.3.2 Program for Data Transfer

We built up the framework for successful communication and we got ready
for the actual transmission of both the data and control bits. We decided to use 8
parallel port data pins for data and 4 parallel port control bits for controls (Clock
increment, Clock reset, two RAM control bits), and finally 1 status bit for checking the
state of the device. I think giving the pins that are used again will be better:

D0-D7 Data pins Transmitting the data of image

Strobe Counter Increment

Autofeed Counter Reset

Init RAM control bit 1

Select Input RAM control bit 2

ACK Receiving data from the board

We will continue our discussion of the program after giving the overall view of
GUI:

 - 41 -

Figure 4.12: Parallel Port Data Transfer GUI

First, we see the “Prepare the port for connection” button. It prepares the port
so that we start in a counter reset, RAMs closed position instead of a random state
before connecting the parallel port device. After that phase, ‘Search for
connections’ button is enabled.

Secondly, we see Connection Status part and ‘Search for connections’. It
actually looks to the status bit and gets the status of the device that the parallel port
is connected to. It takes the switch position and controls it. If it is in a low position,
then it means the device is in READ position and one should not attempt to write to
the device. It only allows transferring data if that switch is found in a high position,
corresponding to WRITE. We should note that Load Data option of transfer is greyed
out before making that check.

Thirdly, Data Status tab is seen. It helps the user to browse and load the image
data which is processed for our system beforehand. The image data is then
processed into computer’s RAM.

The last part is the actual transfer to our device. When all other operations are
successful, this option is enabled and when the user presses this button, according to
above schema, the data is transferred sequentially. After the operation, write
operation is closed totally and the counters are reset. The user is then asked to
change the switch position on the board.

The program is a modified version of the one designed in last semester
actually, because it is now designed so that it supports three RAMs in the circuit.

 - 42 -

Coupled with Matlab processing, these in turn gave us the means to implement 24-
bit color depth.

The program is implemented in C# using Microsoft Visual Studio 2005. The
program requires .NET Framework 2.0 to run. The code for this program is given in
APPENDIX C.

 - 43 -

CHAPTER 5

Main PCB Design - Power Transmission – Mechanic Platform (Test-Bench)

5.1 Power Transmission

We planned a practical design for power transmission as can be seen below.
Briefly, we planned to use an additional PCB to prevent losing the central pixel of the
display (without this PCB power transmission connector and our central pixel are
overlapped and this case will obviously corrupt the image). In addition to this,
additional PCB is benefited for Infrared circuit which is for reset the counters (detailed
information about this IR circuit is given in relevant chapter) by making a hole on
board.

Figure 5.1: First planned Power Transmission Design (It could not be realized)

Although that design is fitness for our purpose, we experienced some
problems while constructing the design. The most significant problem that we face
was existed in the design of carbon brushes of which duty is transferring the Vcc to
the spinning part. Since motor speed is so high (about 3600 rpm) screw that holds
the rotor was shaking too much which was not able to prevented. Because of this
case, connection between isolated screw and brush detached continuously, and
stable power transmission was not realized. After several trials for managing to work
it, we decided to change brush technique since it seemed to an unreliable solution.
So we started to find a more efficient mechanism than brush technique. After several
attempts, we found a special capscrew which has two cylindrical metal bodies;
each can spin independently with each other. However they are connected with
each other by little metal spherical balls placed between outer metal body and
inner one. Through this mechanism, inner body can turn with rotor at same speed;
however the outer body to which connects the power transfer cable is immobile.
That is to say that, this new type of capscrew fortunately solves the problem of

 - 44 -

unstable power transmission originated in shaking. And we decided to use it in Vcc
transmission.

Another important change in the design of power transmission should have
been existed in transferring the Vss (ground) to the spinning part. We planned to use
a carbon brush which directly connects the rotor for ground transmission. And at the
end of the rotor which was isolated (for preventing short circuit case) before coming
close the special screw, rotor should have connected to the ground copper pad of
the previous PCB. But then we realized that this method was impractical, since after
constructed the power transmission body the rotor could not connect continuously
on the copper pad due to destruction of the pad while drilling the board. We
decided that this method was unreliable and so it should be changed.

We solved the problem stated above by using a special threaded nut which
connects directly to the motor and also since it has a great radius, it can directly
connect the semicircular copper pad which is specially designed for ground
transmission. Thus this problem was overcome.

It should be stated that we used the body of the motor for ground transmission
due to its direct connection to the rotor as we realized in the previous term.

Although we solved the problems stated above, unfortunately we
experienced an unexpected problem at the end of this term. Since our first board
(power transmission PCB) is not symmetrical with respect to the center (drilled hole
into which rotor passed), our motors rotor was a little bit wrapped. So this situation
caused a shaked rotation which sometimes causes disconnection in the overall
transmission path. This problem could be overcome, but since we had a powerfull
drill motor we decided to use it instead of our current motor.

There is no significant change existed in our design, even it makes easier our
Vcc transmission fortunately since it has a long drill screw which provides us with
more convenient workspace. But since the body of the drill is plastic we could not
find a way to transmit the Vss at first. But we guessed that there should be a
connection, which directly connects to the rotor, in the drill. For this purpose we tried
to find this connection by a long conductor (this conductor connects one of the
probe of multimeter) and a multimeter of which other probe directly connected to
rotor. In other words we tried to find the short circuit between the rotor and a
conducted point which will be the starting point of our potential Vss transmission
path. A little later we found this point in the drill easily. So our design becomes similar
to design of our previous motor.

To sum up, we transmitted the Vss by using the rotor which connects directly
the semicircular copper path on the center of the motor through the threaded nut of
which duty likes a conducted bridge between the rotor and semicircular copper
path. And through our special capscrew we transmitted the Vcc. We transmit the
Vcc the outer circle, which is immobile, of the capscrew. And we interposed the
cable between the isolated rotor and the inner circle of the capscrew which is
mobile and rotate with PCBs. Cables beneath the inner circle then soldered to
copper path, which is designed for Vcc transmission on the Power transmission PCB.
Thus we managed to transmit Vcc to the rotated PCBs.

Below the power transmission PCB image is given. The duty of each location is
explained in detailed.

 - 45 -

Figure 5.2: First PCB

Overall power transmission design implemented on motor is given below.

Figure 5.3: Power Transmission Design (with back PCB) Implemented on Motor

 - 46 -

After making the necessary modifications to our first design as explained, we
checked power transmission design by placing a LED on the spinning board. We
tried to prevent possible impulsive disconnection by utilizing a capacitor connected
between the Vcc and Vss. We saw that a circular image created by this LED, also
there was no wrinkle, so it was the evidence that the power transmission design works
properly. Photos demonstrated no wrinkle motions of active LED are given below.

 Figure 5.4: LED is turned on, but rotation has net started yet.

Figure 5.5: LED is turned on and rotation started.

5.2 PCB Design

After finishing the self designed schematic design, we started to design PCB.
This part of the project is so important since the PCB design method can directly
affect the operation of the overall circuit. That is to say that even if the connections
of copper pads are consistent of schematic, circuit might not be operated as

 - 47 -

desired. The most important PCB design rules that we strictly tried to comply with are
the adjustment of the copper pad width in some special location, and placing the
oscillator circuit.

Each of our LEDs sinks 20mA from the buffer and discharge this current to the
same GND pad. In our current design we have three groups of LEDs, each includes
16 LEDs for RGB design. As we realized in last semester, we try to maximize the
thickness of the ground paths of LED groups as possible as we can in order to prevent
electromigration effect. Also we make each groups current discharge to main
ground connection through different paths due to the same purpose stated. This
design specification can be seen from the figures demonstrating the PCB.

That is the fact that 0.3mm (minimum thickness of ordinary copper paths of
the circuit that manufacture can product) is not sufficient so much current (20mA X
16 = 320mA for each group of LEDs). If this amount of current passes through a thin
pad, Electromigration can be occurred. In other words, there can be a failure of a
copper conductive strip due to electromigration. So that thickened pads gone
through the LEDs and common GND pad as possible as we can. In addition to this
Vcc and Ground connectors’ (which also hold the main Spinning Display Board)
pads were thickened too much in order to reduce the resistive effects of them.

Another important rule is that the circuit elements which constructed the
oscillator and directly connected the oscillator circuit (crystal oscillator, capacitors,
inverters, and multiplexer in our circuit) should be placed closely with each other. We
obeyed this rule also.

Another restriction that we have to allow was PCB manufacturer’s minimum
specifications. For most efficient design we should have use minimum clearance
(distance between pads), and pad width should have been lower than 0.3mm, but
since we could not manufacture the PCB ourselves with our self adjusted
specifications we have to ask for help to a professional PCB manufacturer. Our chose
manufacturer informed us that they can print the minimum width of 0.3mm for
copper pad, and 0.3mm for clearance. So we had to allow these restrictions, and
drew the PCB by using EAGLE 4.16r1 Professional Edition software. We placed the
components in most efficient way, and routed the important connections (pads
gone through the LEDs, common GND path, Vcc and Ground connectors’ pads
etc.) ourselves, and we made EAGLE’s Autorouter route the rest of the board. By
using autorouter’s most complicated routing algorithm, we finalized routing the
board.

It should be mentioned that PCB design process is almost similar to last
semester’s design. So, above specifications are valid in both our current PCB and last
semester’s design. But since the schematic of our current design is more complicated
(we increased the number of RAMs, buffers, LEDs, switches etc.) routing our new PCB
was so exhausting and difficult process for us.

The most important difference of our current PCB is deciding the locations of
the LEDs. We decided to placed each group of LEDs like medians or bisector (each
median ends at the center of gravity) of a triangle. In other words, assume Cartesian
coordinates; the first group (for Red color) is located along the -y- axes. The second
group (for Green color) is located along the line which makes an angle of 120° with -
y- axes. And the last group (for Blue color) is located along the line which makes an

 - 48 -

angle of -120° with -y- axes. Center of gravity obviously becomes the center of our
circular motion. The figure demonstrating the locations of LED groups is given below.

Figure 5.6: Location of RGB LED groups on the PCB.

Finally overall PCB Design is given below. Since understanding the both of top
and bottom layer together in same image is too difficult, each layer is shown
separately. Final figure is for overall PCB.

 - 49 -

Figure 5.7: Top layer of PCB.

Figure 5.8: Bottom layer of PCB.

 - 50 -

Figure 5.9: Whole PCB with both TOP and BOTTOM layers.

5.3 Mechanic Platform (Test-Bench)

In previous term we experienced a serious problem which is that we required
a platform on which we placed our whole design. Lacking of a specific platform was
problem for us, since our motor is rotated at a huge speed and at that speed it is
impossible to control it by hand or any other weak holders. Motor should be hold by
a very strength holder so that its shaking effect which affects vision negatively can
be prevented. But another mechanic problem that we should overcome is
protecting people from unexpected accident which is protruded small components
or parts of board stemming from centrifugal force of motor due to boards huge
speed.

So we decided to make a strong and efficient platform in the beginning of this
term. This was an urgent necessity, since all of tests should have been done on this
platform securely. For these purposes we started to make its design and tried to
produce it at the beginning of this term. Below the design and production process
are explained in detailed.

Our project’s aim is to show an image which is from a rotated board and its
“soft-pixels” stemming from the rotated LEDs on the board. The closest design to our
display is a monitor or a TV. So we decided that the most suitable design is a platform
which should provide us the above requirements and resemble the computer or TV
casing.

Then we started to design our platform (Test-Bench) by using GoogleSketchUp
3D drawing software. After evaluating specifications that we require, our design was
completed. Our design is given as follows.

 - 51 -

Figure 5.10: Technical Drawing of Test-Bench

After designing the platform, we need a professional help to implement our
design. So we requested Machine workshop’s help which is for machine engineers.
Through the professional engineers directions we bought the discrete materials which
will construct our Test-Bench. Our design comprised of aluminum (Aluminum 7075
which is machined so easily) for back of the platform, curtain parts and screws which
connects back part to the front panel. We used bell metal to make the frame which
constructs the front panel. The plexiglass material which is transparent like pure glass,
but machinable in contrast to pure glass, is used for the display screen. Besides, a
small plastic material is used for motor holding. We could have hold the motor just
using the aluminum back part of the platform, but there was a possibility that our
current motor may change in case of its lacking of capability to move our new
board. So we made a hole which is diameter is bigger than our current motor
diameter, at the center of back aluminum part (Both of our motor’s diameter and
plastic part’s inner diameter is 370mm. But diameter of the hole which is on the back
aluminum part is 600mm). And just behind this hole we placed a plastic platform of
which inner diameter matches our motor’s diameter; its duty is stabilizing the motor
only. In the case of a new motor’s necessity we remove this part and put another
plastic part instead of it. If the fact that difficulty of machining the aluminum part
which is tied to other parts of platform is more complex than machining a free plastic
part is considered, the effectiveness of our solutions can be realized easily.

We changed our motor as stated in power transmission part. But reason is not
its lack of capability to move the boards. Substitution is made due to wrapping on
rotor mil. But fortunately the radius of our new drill motors body is lower than the first
motor. So by exerting pressure with little screw embedded in plastic part, we
managed to clasp it.

Images for our completed Test-Bench are given below.

 - 52 -

Figure 5.11: Front View of our Test-Bench

Finally, dimensions of our Test-Bench are given below as figures.

Figure 5.12: Front View and Dimensions

 - 53 -

Figure 5.13: Side View and Dimensions

 - 54 -

CHAPTER 6

Motor Control

6.1 Why is Motor Control Needed?

Motor Control is one of the most important fundamentals of the Spinning

Display Project. According to our early theory, we can easily see that delay caused
by motor speed leads to mismatch of data to be seen on the screen. This may result
several problems such as image to be in a bad mood such as; misplaced,
expanded, compressed or a rotating image. Therefore we need to stabilize the
motor speed.

6.2 Linear Voltage Motor Control

Since we use a DC motor to rotate the rotational part of the project, we had

mainly two alternative ways to stabilize motor speed. The first way is to use PWM.
Spinning Display Project’s early works showed us that using PWM (Pulse with
Modulation), would be unsuccessful about lots of issues. The most important defect
of PWM was the ON-OFF principle of it that disturbs continuity and causes the LED’s
positions to mismatch with their expected positions during lowering and increasing
the speed of motor. Because, image frames are refreshed in a very high frequency
and PWM is done in a very low frequency.

Moreover, the duty cycle of the PWM directly affects the amount of energy
applied to the motor. The frequency of the PWM waveform will also influence the
motor’s operation. Since the motor is a dynamic machine, the PWM frequency can
be fairly low, before the motor starts to pulsate noticeably in synchronization with the
PWM frequency. This leads to an important acoustic problem. Therefore we should
set the frequency of PWM as low as possible. This is again unsatisfactory for us.

Second main alternative is to use Linear Control Method to stabilize motor
speed. The project’s recent works showed that the most efficient way would be
controlling the motor’s speed by modifying the supply characteristics of the motor.
Although this linear-voltage method is highly power inefficient, it is admissible for us, in
case we achieve to stabilize.

 - 55 -

DAC MC

sensor

counte

Motor
Driver
Circuit

Mot

 VEE

6.3 Hardware Design

The speed of the DC Motor is controlled with the closed loop feedback circuit
shown below, by varying the crossing current through the motor. In the first figure you
can see the block diagram of the circuit, with general steps. The schematic of the
circuit and also the PCB layout of it, are below too. The necessary drawings are
composed by using software, eagle.

Figure 6. 1 Block Diagram of the motor control circuit

 - 56 -

 - 57 -

Figure 6. 2 Schematic of the motor control circuit

 - 58 -

We can examine the circuit in five parts, namely; reaching the digital speed
information, determining the actual speed, determining the desired speed and
applying necessary feedback, changing the digital data to the analog one as
voltage variable, and the motor driver part of the circuit. The component selections
and the general characteristics of the components are also included to the sections
below.

Figure 6. 3 PCB of the motor control circuit

 - 59 -

6.3.1 The Infrared Receiver and Infrared LED

We have to measure and adjust the speed of the motor to control and
stabilize it the value that we want it to rotate. To measure the rotating motor’s real
speed when it is loaded, we need to use a sensor. Therefore we added an Infrared
Receiver (V 19 342) and an Infrared LED to the motor speed control board. The
constructed Infrared receiver and Infrared LED circuit is important to count the spin
of the display board. Both of the receiver and the LED are on the motor speed
control board. Since both Infrared Receiver and IR LED are on the motor speed
control board, we will use a mirror pasted on the behind of the display board. The
test circuit was constructed for the IR sensor and LED couple as seen in the figure
below:

Figure 6. 4 Infrared Receiver9

As a result reflecting IR light reaches the receiver and every time the mirror
reflects IR light, counter is incremented by one. The signal that comes out from the
Infrared Receiver is connected to the clock pin of a 12-bit counter (we use only 7-bits
of the counter). By the use of the microcontroller, counter counts the signals till the
time period, specified by microcontroller, ends.

9 www.archer.com

 - 60 -

As seen from the figure above, the IR sensor has three connections as Ground,
Supply and Data connections. Supply is 5V and data pin is connected to a transistor
to employ the transistor as a switch to generate necessary voltage for counter.

Infrared receiver rejects all light sources that are not modulated at 40 kHz, for
reliable operation. We designed and tested necessary circuits in the laboratory and
added them to motor speed control circuit. We also used the sensor circuit to obtain
VS vs. rpm graph of our motor. We repeated the test with stroboscope to check the
reliability of the sensor, the results were consistent. Test results are in the figure below.
The test is done when the motor is unloaded.

When the motor was loaded with the main PCB on it and the mirror was
behind the PCB, we again measured the speed of the motor using the oscilloscope.
Applying nearly 7-8 V to motor leads it to rotate with 1500rpm speed when it is
loaded. The figure below is the Speed versus Voltage graph of the motor.

Figure 6. 5 Speed versus voltage graph (measured with sensor)

We will implement the circuit as below to supply 40 kHz 5V signal to the IR LED,
we drew its PCB however in the tests we used a signal generator to obtain 40 kHz
signal, since we don’t have timer (555) to implement 40 kHz 5V signal yet.

 - 61 -

Figure 6. 6 40 kHz. Signal circuit10

We used another Infrared Receiver on the display board. Infrared light comes
to this sensor from the Infrared LED located on the motor speed control board. We
used this Infrared Receiver to reset Ram address counters. We used this reset to start
displaying image from a predetermined location. Otherwise the image may be
displayed by a phase difference due to original image and another possible error
would be a rotating image because of the error in motor speed. If motor runs faster
than you want the image starts to rotate counterclockwise, assuming the motor runs
in clockwise direction. Due to the location of the Infrared LED, the image data
written on RAM is again started to be sent to LED’s every time and everywhere the
Infrared LED resets counter of RAM.

We encountered a problem about the duration of reset time. As the Infrared
Receiver sees the Infrared LED, the counter is in reset mode and don’t counts. So the
image is not shown in reset time. If the reset time is long, there will be a blank area
over the image. Before the reset ends, no data will be sent to LED’s. As a result we
should decrease the reset duration.

We used the advantage of using double display board. We placed the
Infrared Receiver on the first display board (the board that is behind the board which
you see when observing the image), therefore Infrared Receiver is not able to see
Infrared LED in case you don’t open a hole to the second display board. We drilled a
small hole on the second display board on the point just between the Infrared
Receiver and Infrared LED. This way provides us a decrease in the reset duration.

10 http://www.robotroom.com/Infrared555.html

 - 62 -

6.3.2 The Counter

The Motor’s actual speed information is determined nearly in this part of the
circuit. The digital pulses coming from the infrared sensor to the clock of the counter
is counted by the counter and a digital data is generated for the microcontroller as
input. We used a 12-stage binary counter -MM74HC4040, because of its high speed,
low power consumption and high noise immunity characteristics. After we tested the
counter in the lab with applying pulse to its clock we reach the expected results.

6.3.3 The Microcontroller

We used a microcontroller named 18F452, an 8-bit microcontroller, produced

by Microchip. We need a microcontroller because we need to implement an
adjustable speed control circuit with closed-loop feedback. The microcontroller
provides us to implement a wide variety of feedback control algorithm to our motor
speed control board. We chose that microcontroller because of some factors such
as

• Availibility to buy in Istanbul

• Higher memory capacity

• Higher number of Input/Output pins

Three ports are defined as input pins in that microcontroller. We used PortA(0-
6) as input pins. We used PortA of the 18F452 to read tour count of the rotating motor
using output pins of the 4040 counter. PortB is also used as input pins. We used PortB
of the 18F452 to determine the period to check RPM of the motor. We used 8 pins of
the PortB to determine period in other words we may change period in the order of 1
to 256. In order to apply a check period we implemented a loop count in the
software loaded to the Microcontroller. PortC is also used as input. We used PotrC to
read the repeat count of the motor in the given check period.

Two ports of the 18F452 are defined as outputs. Portd is used to send digital
data to be converted to analog data to the DAC. It is 8-bit data, means all 8 pins of
the PortD are used. PortE is also used. Only one pin of the PortE is used. We used this
pin to reset counter every time we read repeat count from the counter at the end of
check period.

The desired speed of the motor is between 1500 and 3600 RPM related to the
oscillator value used in the display board. This value corresponds X repeat in one
second. This value is to be written to the Microcontroller via switches connected to
the PortA. Then everytime check period ends, current repeat count of the motor is
read from counter via PortC. These values are compared. Then the signed difference
will be multiplied by a value, and the result will be stored in the microcontroller. This
stored value will be sent to DAC via PortD. All pins of PortD are defined as output pins
and connected to a DAC. DAC converts this digital data to analog voltage. The
resulting current in the output of the Dac is converted to voltae by an opamp. That
volage is applied to gate of a Power Mosfet which results in change in current
passing through Motor at the same time change in the speed of the motor. Then this
procedure repeats itself periodicallt by the time check period ends.

 - 63 -

We use PI control algorithm to the microcontroller as described over the
figure. It is not PID because we are not considering the difference or change in the
speed. Always we look at the speed value and increase or decrease the current
passing through the motor to change the speed according to the desired speeed
value. As we have the opportunity to change algorithm loaded to the
microcontroller, we may implement another algorithm for speed control in case we
are not satisfied with the performance of that method.

The assembly code that we implemented PI control to the MicroContrller is
given in the Appendix D.

6.3.4 The Digital to Analog Converter

From now on, we start to convert the digital output of the microcontroller to a

meaningful expression for our motor by using a digital to analog converter (DAC).
Digital-to-analog converters are interfaces between the abstract digital world and
analog real life.

We want to compensate the motor’s actual speed with the error voltage
value, which is calculated with microcontroller as an 8 bit digital data, to reach the
expected speed of the motor and keep it constant.

As explained before we benefit from the voltage-speed relation of the motor
to change its speed, therefore the error signal from DAC must be a voltage signal
which is a physical quantity.

We decided to use the DAC0808 for this implementation of the circuit
because of its fast settling time, high speed and low power consumption
specifications. The data from microcontroller is used as 8 digital input bits for the
DAC. Its output signal is a current signal whose magnitude can be determined also
with the Vref inputs of the DAC again. Because, we want to reach a voltage signal
for control operation, we stetted the circuit as below to gain the desired voltage
compensation value for the motor.

 - 64 -

Figure 6. 7 Digital to Analog Converter11

While constructing this circuit we used LM353, a general purpose operational
amplifier which is suitable for our specs.

6.3.5 The Power Mosfet

The last part of our motor control circuit design we have the motor drive
circuit. We used a power mosfet, IRFP244.

First of all, the power mosfet have to work in its linear region for the linear-
voltage motor control application and this linear region must be enough long to
satisfy our specs. The graph in Figure 6.10 shows the linear transfer characteristics
explicitly. Moreover, its high impedance is convenient for adapting it to such a
design. According to electrical specifications we connect the motor between the
IRFP244’s source and -15V.

11 www.futurlec.com

 - 65 -

Figure 6. 8 Saturation Characteristics of the Power Mosfet12

Changing VGS value we measured speed samples by using stroboscope.
Afterwards we see he perfect linear relation between the voltage and the motor’s
speed. The other important result of this test is that the three motor’s speed samples
determined from IR sensor test is consistent with our stroboscope test results. This was
very joyful for us. We can see the stroboscope test results without load from the
graph below.

Figure 6. 9 Speed versus voltage graph(measured with stroboscope)

6.4 Conclusion

We must control and so that stabilize its speed for preventing mismatching of
the images with their expected positions. One of the most important ways of the

12 www.futurlec.com

 - 66 -

motor control is applying a closed loop feedback control, using linear-voltage
method to vary the voltage and current applied to the motor.

Our design for this kind of a circuit, that is shown below is finished. We draw
the schematic and PCB of the circuit as shown in the figures 6.2 and 6.3. The figure
shown below is the photograph of the Motor Control Board.

Figure 6. 10 Latest Pcb of the Motor Control Circuit

Figure 6. 11 Motor Control Board

 - 67 -

CHAPTER 7

Cost Analysis

For this project, we worked as a team of 5 people under the authority of three
instructors. All of us are senior students in Boğaziçi University Electrical and Electronics
engineering.

For the first semester, each person worked for this project nearly 5 hours per
week (for 15 weeks), this means that totally we spared 7 hours per week individually
which is totally 105 hours. It can be considered as a reference that the salary of a
graduate engineer working for such a project is nearly 12.5YTL per hour. Therefore, it
can be calculated that if we worked for such a project as an engineer, we would be
able to earn 1312.5YTL individually. Which results in an amount of 1312.5*5 = 6562.5Ytl.

For the second semester, each person worked for this project nearly 6 hours
per week, which is totally 15*6 = 90 hours up to now. It can be considered as a
reference that the salary of a graduate engineer working for such a project is nearly
12.5YTL per hour and if we consider we are getting experienced we may increase
our salary to 15Ytl. Therefore, it can be calculated that if we worked for such a
project as an engineer for 15 weeks, we would be able to earn 1350 YTL individually.
Which results in an amount of 1350*5 = 6750Ytl.

We have also paid some money for the necessary equipments that will be
used in our project.

Test bench 200

300 Smd LEDs(KPHHS-1005SURCK) 33

200 Smd LEDs KPHHS-1005CGCK(V5) 60

150 Smd LEDs KPHHS-1005PBC-A(V4 20

Microcontroller (18F452) 38

Motor (Brushless DC) and PCB stabilizer 40

PCB cost (Spinnıng Board and MCB) 300

Necessary IC's 250

Necessary Equipments 90

First Semester Engineering Work 6562.5

Second Semester Engineering Work 6750

Total 14343.5

 - 68 -

Moreover we have submitted an application to the EMO’s (Elektrik
Mühendisleri Odası) project competition with this group and Spinning Display project.
We won the support of 400Ytl for our project for the time being.

 - 69 -

APPENDICES

 - 70 -

APPENDIX A

Electromigration

Electromigration is the transport of material caused by the gradual movement of the ions in a
conductor due to the momentum transfer between conducting electrons and diffusing metal atoms. The
effect is only important in applications where high direct current densities are used, such as in
microelectronics and related structures. As the structure size in electronics such as integrated circuits
(ICs) decreases, the practical significance of this effect increases.

Electromigration decreases the reliability of ICs. In the worst case it leads to the eventual loss
of one or more connections and intermittent failure of the entire circuit. Since the reliability of
interconnects is not only of great interest in the field of space travel and for military purposes but also
with civilian applications like for example the anti-lock braking system of cars, high technological and
economic values are attached to this effect.

Due to the relatively high life span of interconnects and the short product lifecycle of most
consumer ICs, it is not practical to characterize a product's electromigration under real operating
conditions. A mathematical equation, the Black's equation, is commonly used to predict the life span
of interconnects in integrated circuits tested under "stress", that is external heating and increased
current density, and the model's results can be extrapolated to the device's expected life span under
real conditions. Such testing is known as High temperature over life (HTOL) testing.

Although electromigration damage ultimately results in failure of the affected IC, the first
symptoms are intermittent glitches, and are quite challenging to diagnose. As some interconnects fail
before others, the circuit exhibits seemingly random errors, which may be indistinguishable from other
failure mechanisms (such as ESD damage.) In a laboratory setting, electromigration failure is readily
imaged with an electron microscope, as interconnect erosion leaves telltale visual markers on the metal
layers of the IC.

With increasing miniaturization the probability of failure due to electromigration increases in
VLSI and ULSI circuits because both the power density and the current density increase. In advanced
semiconductor manufacturing processes, copper has replaced aluminium as the interconnect material
of choice. Despite its greater fragility in the fabrication process, copper is preferred for its superior
conductivity. It is also intrinsically less susceptible to electromigration. However, electromigration
continues to be an everpresent challenge to device fabrication, and therefore the EM research for
copper interconnects is ongoing (albeit being a relatively new field.)

A reduction of the structure (scaling) by a factor k increases the power density proportional to
k and the current density increases by k2 whereby EM is clearly strengthened.

In modern consumer electronic devices, ICs rarely fail due to electromigration effects. This is
because proper semiconductor design practices incorporate the effects of electromigration into the IC's
layout. Nearly all IC design houses use automated EDA tools to check and correct electromigration
problems at the transistor layout-level. When operated within the manufacturer's specified temperature
and voltage range, a properly designed IC-device is more likely to fail from other (environmental)
causes, such as cumulative damage from gamma-ray bombardment.

Nevertheless, there have been documented cases of product failures due to electromigration.
In the late 1980s, one line of Western Digital's desktop drives suffered widespread, predictable failure
12-18 months after field usage. Using forensic analysis of the returned bad units, engineers identified
improper design-rules in a third-party supplier's IC controller. By replacing the bad component with

 - 71 -

that of a different supplier, WD was able to correct the flaw, but not before significant damage to the
company's reputation.

Overclocking of processors, especially when using higher than nominal voltage, causes
electromigration between their transistors and significantly shortens the chips' lifetime.

Electromigration can be a cause of degradation in some power semiconductor devices such as
low voltage power MOSFETs, in which the lateral current flow through the source contact
metallisation (often aluminium) can reach the critical current densities during overload conditions. The
degradation of the aluminium layer causes an increase in on-state resistance, and can eventually lead
to complete failure.13

Figure A1: Failure of a copper conductive strip due to electromigration, viewed with a
scanning electron microscope.14

13 http://en.wikipedia.org/wiki/Electromigration
14 [http://en.wikipedia.org/wiki/Image:Leiterbahn_ausfallort_elektromigration.jpg]

 - 72 -

APPENDIX B

Program Codes

The Code for the program for transferring data to the device:

PortInterop.cs Contents:

using System;
using System.Runtime.InteropServices;

public class PortAccess
{
 [DllImport("inpout32.dll", EntryPoint="Out32")]
 public static extern void Output(int adress, int value);
 [DllImport("inpout32.dll", EntryPoint = "Inp32")]
 public static extern int Input(int adress);
}

Program.cs Contents:

using System;
using System.Collections.Generic;
using System.Windows.Forms;

namespace SpinningDisplayP
{
 static class Program
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
 }
}

Form1.cs Contents:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Threading;
using System.IO;

namespace SpinningDisplayP
{

 public partial class Form1 : Form
 {

 - 73 -

 Display Spinning;

 public Form1()
 {
 Spinning = new Display();
 InitializeComponent();
 Form1.CheckForIllegalCrossThreadCalls = false;
 //Random ali = new Random();
 //FileStream yusuf = new FileStream("c:\\yusuf.txt",

FileMode.Create);
 //StreamWriter armut = new StreamWriter(yusuf);

 //armut.WriteLine("Ram1 Data");
 //armut.WriteLine("512000");
 //for (int i = 0; i < 512000; i++)
 //{
 // armut.WriteLine(ali.Next(255));
 //}
 //armut.WriteLine("Ram2 Data");
 //armut.WriteLine("512000");
 //for (int i = 0; i < 512000; i++)
 //{
 // armut.WriteLine(ali.Next(255));
 //}

 //armut.Close();
 //yusuf.Close();

 }

 private void SearchButton_Click(object sender, EventArgs e)
 {
 PortSearch.RunWorkerAsync("");
 }

 private void PortSearch_DoWork(object sender, DoWorkEventArgs

e)
 {
 SearchButton.Enabled = false;
 Spinning.SearchForConnections(ConnectionStatus);
 SearchButton.Enabled = true;

 if (Spinning.DataStatus == Status.DataLoaded &&

Spinning.ConnectionStatus == Status.Connected)
 {
 TransferPanel.Enabled = true;
 }

 }

 private void Prepare_Click(object sender, EventArgs e)
 {
 Spinning.PreparePort();
 ConnectionPanel.Enabled = true;
 }

 private void LoadData_Click(object sender, EventArgs e)
 {
 Spinning.GetDataByDialog(openFileDialog1);
 }

 - 74 -

 private void openFileDialog1_FileOk(object sender,
CancelEventArgs e)

 {
 Spinning.GetData(openFileDialog1);
 if (Spinning.DataStatus == Status.DataLoaded)
 {
 DataLoadedLabel.Text = "Data Loaded";
 }
 if (Spinning.DataStatus == Status.DataLoaded &&

Spinning.ConnectionStatus == Status.Connected)
 {
 TransferPanel.Enabled = true;
 }
 }

 private void TransferButton_Click(object sender, EventArgs e)
 {
 ConnectionPanel.Enabled = false;
 DataPanel.Enabled = false;
 TransferPanel.Enabled = false;
 TransLabel.Visible = true;
 DataTransfer.RunWorkerAsync();
 }

 private void DataTransfer_DoWork(object sender,

DoWorkEventArgs e)
 {
 Spinning.TransferData();
 }

 private void DataTransfer_RunWorkerCompleted(object sender,

RunWorkerCompletedEventArgs e)
 {
 ConnectionPanel.Enabled = true;
 DataPanel.Enabled = true;
 TransferPanel.Enabled = true;
 TransLabel.Visible = false;
 }
 }

 public enum Status
 {
 Connected, NotConnected,TryingToConnect, Transferring,

DataNotLoaded, DataLoaded
 }

 public class Display
 {
 public Display()
 {
 ConnectionStatus = Status.NotConnected;
 DataStatus = Status.DataNotLoaded;
 WriteAddress = 0x378;
 ReadAddress = 0x379;
 ControlAddress = 0x37A;
 //WriteAddress = 0x03bc;
 //ReadAddress = WriteAddress + 1;
 //ControlAddress = WriteAddress + 2;
 SearchTimeOut = 1000;
 SearchStep = 10;

 - 75 -

 OneThirdCycle = 1;

 }

 public int PreparePort()
 {
 PortAccess.Output(ControlAddress, 14 ^ 0x0b); // clock

reset 1110
 return 1;
 }

 public int GetDataByDialog(OpenFileDialog openFileDialog1)
 {
 if (DataStatus == Status.DataNotLoaded)
 {
 openFileDialog1.ShowDialog();
 }
 return 1;
 }

 public int TransferData()
 {
 int i;

 DateTime Current = DateTime.Now;

 PortAccess.Output(ControlAddress, 14 ^ 0x0b); // clock

reset 1110

 for (i = 0; i < Ram1Data.Length; i++)
 {
 PortAccess.Output(ControlAddress, 12 ^ 0x0b); //

clock sonu 1100
 PortAccess.Output(WriteAddress,Ram1Data[i]); // Data

hazır
 //Thread.Sleep(OneThirdCycle); // Az bekle az sonra

ram açılacak
 PortAccess.Output(ControlAddress, 0 ^ 0x0b); // 1.

rami aç controllere 0000 ver
 //Thread.Sleep(OneThirdCycle); // az bekle yazmasını
 PortAccess.Output(ControlAddress, 12 ^ 0x0b); //

kapat şimdi rami 1100
 //Thread.Sleep(OneThirdCycle); //biraz bekle
 PortAccess.Output(ControlAddress, 13 ^ 0x0b); // ram

kapalıyken bi clock ver de bi sonraki adrese geçelim
 // yani 1101
 }

 //Counterı resetle bakalım
 PortAccess.Output(ControlAddress, 14 ^ 0x0b); // clock

reset 1110
 //Thread.Sleep(OneThirdCycle);

 for (i = 0; i < Ram2Data.Length; i++)
 {
 PortAccess.Output(ControlAddress, 12 ^ 0x0b); //

clock sonu 1100
 PortAccess.Output(WriteAddress, Ram2Data[i]); // Data

hazır

 - 76 -

 //Thread.Sleep(OneThirdCycle); // Az bekle az sonra
ram açılacak

 PortAccess.Output(ControlAddress, 4 ^ 0x0b); // 2.
rami aç controllere 0100 ver

 //Thread.Sleep(OneThirdCycle); // az bekle yazmasını
 PortAccess.Output(ControlAddress, 12 ^ 0x0b); //

kapat şimdi rami 1100
 //Thread.Sleep(OneThirdCycle); //biraz bekle
 PortAccess.Output(ControlAddress, 13 ^ 0x0b); // ram

kapalıyken bi clock ver de bi sonraki adrese geçelim
 // yani 1101
 }

 PortAccess.Output(ControlAddress, 14 ^ 0x0b); // clock

reset 1110

 for (i = 0; i < Ram3Data.Length; i++)
 {
 PortAccess.Output(ControlAddress, 12 ^ 0x0b); //

clock sonu 1100
 PortAccess.Output(WriteAddress, Ram3Data[i]); // Data

hazır
 //Thread.Sleep(OneThirdCycle); // Az bekle az sonra

ram açılacak
 PortAccess.Output(ControlAddress, 8 ^ 0x0b); // 3.

rami aç controllere 1000 ver
 //Thread.Sleep(OneThirdCycle); // az bekle yazmasını
 PortAccess.Output(ControlAddress, 12 ^ 0x0b); //

kapat şimdi rami 1100
 //Thread.Sleep(OneThirdCycle); //biraz bekle
 PortAccess.Output(ControlAddress, 13 ^ 0x0b); // ram

kapalıyken bi clock ver de bi sonraki adrese geçelim
 // yani 1101
 }

 PortAccess.Output(ControlAddress, 14 ^ 0x0b); // clock

reset 1110

 TimeSpan Passed = DateTime.Now - Current;

 MessageBox.Show("The operation completed in " +

Passed.Seconds.ToString() + " seconds.");
 return 1;

 }

 public int GetData(OpenFileDialog openFileDialog1)
 {
 if (File.Exists(openFileDialog1.FileName))
 {
 FileStream FileHandle = new

FileStream(openFileDialog1.FileName, FileMode.Open);
 StreamReader FileReader = new

StreamReader(FileHandle);

 String Current = "";
 Current = FileReader.ReadLine();
 if (Current == "Ram1 Data")
 {
 int NofData = 0;

 - 77 -

 try
 {
 NofData =

Convert.ToInt32(FileReader.ReadLine());
 if (NofData == 0)
 {
 DataError();
 }
 Ram1Data = new int[NofData];
 for (int i = 0; i < NofData; i++)
 {
 Ram1Data[i] =

Convert.ToInt32(FileReader.ReadLine());
 }
 Current = FileReader.ReadLine();
 NofData =

Convert.ToInt32(FileReader.ReadLine());
 if (NofData == 0)
 {
 DataError();
 }
 Ram2Data = new int[NofData];
 for (int i = 0; i < NofData; i++)
 {
 Ram2Data[i] =

Convert.ToInt32(FileReader.ReadLine());
 }
 NofData =

Convert.ToInt32(FileReader.ReadLine());
 if (NofData == 0)
 {
 DataError();
 }
 Ram3Data = new int[NofData];
 for (int i = 0; i < NofData; i++)
 {
 Ram3Data[i] =

Convert.ToInt32(FileReader.ReadLine());
 }
 DataStatus = Status.DataLoaded;
 FileHandle.Close();
 FileReader.Close();
 return 1;

 }
 catch (Exception)
 {
 Ram1Data = null;
 Ram2Data = null;
 Ram3Data = null;

 DataError();
 FileHandle.Close();
 FileReader.Close();
 return 0;
 }
 }
 else
 {
 DataError();
 return 0;

 - 78 -

 }
 }
 else return 0;
 }

 public void DataError()
 {
 MessageBox.Show("There was an error reading data!");
 }

 public int SearchForConnections(Label ConnectionStatusLabel)
 {
 if (ConnectionStatus == Status.NotConnected)
 {
 int CurrentTime = 0;
 int Data;
 int i = 1;
 while (ConnectionStatus == Status.NotConnected &&

CurrentTime < SearchTimeOut)
 {
 ConnectionStatusLabel.Text = "Connecting... Try "

+ i.ToString();

 Data = PortAccess.Input(ReadAddress);

 //MessageBox.Show(Data.ToString());
 if (((Data ^ 0x80)&0x40) == 0x40) //D6 bit is 0
 {
 ConnectionStatus = Status.Connected;
 }
 else
 {
 Thread.Sleep(SearchStep);
 CurrentTime += SearchStep;
 }
 i++;
 }

 if (ConnectionStatus == Status.NotConnected)
 {
 ConnectionStatusLabel.Text = "Could not connect

to the device, check the connection";
 return 0;
 }
 else
 {
 ConnectionStatusLabel.Text = "Connected";
 return 1;
 }
 }
 else return -1;
 }

 public Status ConnectionStatus;
 public Status DataStatus;

 public int WriteAddress;
 public int ReadAddress;
 public int ControlAddress;

 public int SearchTimeOut;

 - 79 -

 public int SearchStep;

 public int[] Ram1Data;
 public int[] Ram2Data;
 public int[] Ram3Data;

 int OneThirdCycle;

 }
}

 - 80 -

APPENDIX C

Brushless DC Motor

BLDC motors are a type of synchronous motor. This means the magnetic field generated by
the stator, and the magnetic field generated by the rotor rotate at the same frequency.

The stator of a BLDC motor consists of stacked steel laminations with windings placed in the
slots that are axially cut along the inner periphery. Depending upon the control power supply
capability, the motor with the correct voltage rating of the stator can be chosen.

The rotor is made of permanent magnet and can vary from two to eight pole pairs with ternate
North (N) and South (S) poles.

Figure C.1: a sample of BLDC15

Unlike a brushed DC motor, the commutation of a BLDC motor is controlled electronically.
To rotate the BLDC motor, the stator windings should be energized in a sequence. It is important to
know the rotor position in order to understand which winding will be energized following the
energizing sequence. Rotor position is sensed using Hall effect sensors embedded into the stator.

The speed can be controlled in a closed loop by measuring the actual speed of the motor. The
error in the set speed and actual speed is calculated. A Proportional plus Integral plus Derivative (P.I.)
controller can be used to amplify the speed error. When a BLDC motor rotates, each winding
generates a voltage known as back Electromotive Force or back EMF, which opposes the main voltage
supplied to the windings according to Lenz’s Law. The polarity of this back EMF is in opposite
direction of the energized voltage.

15 T. Kenjo, "Permanent magnet and brushless dc motors", Oxford, 1985

 - 81 -

The potential difference across a winding can be calculated by subtracting the back EMF
value from the supply voltage. The motors are designed with a back EMF constant in such a way that
when the motor is running at the rated speed, the potential difference between the back EMF and the
supply voltage will be sufficient for the motor to draw the rated current and deliver the rated torque. If
the motor is driven beyond the rated speed, back EMF may increase substantially, thus decreasing the
potential difference across the winding, reducing the current drawn which results in a drooping torque
curve. The last point on the speed curve would be when the supply voltage is equal to the sum of the
back EMF and the losses in the motor, where the current and torque are equal to zero16.

16 www.microchip.com/downloads/en/AppNotes

 - 82 -

APPENDIX D

MicroController Program Codes

 - 83 -

