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Abstract

 A lossy electric power system that contains thermal units and 

a pumped-storage (p-s) hydraulic unit is considered in this paper. 

The total fuel cost of the thermal units in an operation cycle is 

minimized under some possible electric and hydraulic constraints 

by means of a power dispatch method proposed by us and based 

on modified subgradient method operating on feasible values.

 The proposed dispatch technique considers minimum 

and maximum reservoir storage limits of the p-s unit, upper 

and lower generation limits of the thermal units, upper and 

lower pumping/generation power limits of the p-s unit, 

maximum transmission capacities of the transmission lines, 

upper and lower limits of the bus voltage magnitudes and 

off-nominal tap ratios in a considered power system.  

 A nonlinear programming model is set up for the 

problem solution. Power system transmission loss is inserted 

into this model as equality constraints via the load flow 

equations. Since all constraints in the nonlinear 

programming model are functions of complex bus voltages 

and off-nominal tap ratios (once there are off-nominal tap 

changing transformers in the power system), they are taken 

as independent variables. 

 The proposed dispatch technique was tested on an example 

power system that has 12 buses with five thermal units and a p-s 

hydraulic unit. Optimal total cost value for the power system 

without any p-s unit is calculated first. Later on, the same optimal 

total cost value for the power system with a p-s unit is 

recalculated and the obtained saving in the optimal total cost 

value, due to the employment of the p-s unit, is presented. The 

numeric example, which is considered in this paper, was also 

solved by means of other dispatch technique that uses 

pseudo spot price electricity algorithm. Results obtained 

from the proposed method and from the other method are 

compared. 

1. Introduction

 The main function of p-s hydraulic units in electric power 

systems is to store inexpensive surplus electric energy that is 

available during off-peak load levels as hydraulic potential 

energy. This is done by pumping water from the lower reservoir 

of a p-s unit into its upper reservoir. The stored hydraulic 

potential energy is then used to generate electric energy during 

peak load levels (peak shaving hydraulic units). P-s units are 

generally operated over daily or weekly periods. Operation of a 

p-s unit over a period can reduce the total fuel cost in a power 

system. 

 Lee and Chen [1] solved a short term hydrothermal generation 

coordination problem including p-s and battery storage energy 

systems by using multi-pass dynamic programming.  In this paper 

they did not consider transmission losses. Some previous papers that 

do not consider transmission losses can also be found in [2]. In our 

previous work, p-s hydraulic unit scheduling problem in a lossy

electric power system is solved by using the pseudo spot price of 

electricity algorithm (PSPA) in [3]. In this paper some security 

constraints, such as bus voltage magnitude and transmission line 

maximum transmission capability constraints are not considered. In 

reference [4], combined optimization of wind farm and p-s unit in a 

market environment is investigated. The problem is modeled as two-

stage stochastic programming problem that considers two random 

parameters: market price and wind generation. The researchers 

modeled two different joint operations of the units and compare it 

with the uncoordinated operation of them.

In the F-MSG algorithm [5], the upper bound for the cost 

function value is specified in advance and the algorithm tries to 

find a solution where the cost function is less than or equal to

the upper bound and all constraint are satisfied. If it finds it 

(feasible total cost), the upper bound is decreased a certain 

amount, otherwise (infeasible total cost) the upper bound is

increased a certain amount. The amount of decrease or increase 

on the upper bound for the next iteration depends on if any 

feasible or infeasible total cost value was obtained in the 

previous iterations. This process continues until absolute value 

of the change in the upper bound is less than a predefined 

tolerance value.

2. Statement of the problem 

A nonlinear programming model for the economic power 

dispatch problem considered in this paper is given in the 

following:
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Since the beginning and final water volume values of the upper 

reservoir of the p-s unit are taken as the same in the considered 

problem, the total net water amount used by the p-s unit must be equal 

to zero.

0spentTOT pumpTOTq q q− = =
net spent
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2.1. Determination of Line Flows and Power 

Generations

To express the total system fuel cost function in terms of 

independent variables of our optimization model, line flows 

should be written in terms of complex bus voltages and off-

nominal tap ratios (see equations (2)).
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In the above equations, ,i jU and ,i jδ  are  voltage magnitude and  

phase angle of bus i  in the thj subinterval, respectively, 

i k i kr j x+  is the series impedance of the line between buses i

and k , i k i kg jb+  is the series admittance of the line between 

buses i  and k  where 1/( )i k i k i k i kg jb r j x+ = + , sh i sh ig jb+  is 

the sum of the half line charging admittance and external shunt 

admittance if any at bus i , and ,i ja  is the off-nominal tap 

setting in the thj subinterval with tap setting facility at bus 

i , ,i k jp  and ,i k jq  are the active and reactive power flows going 

from bus i  to bus k at bus i  border in the thj subinterval,

respectively. ,k i jp−  and ,k i jq−  are the active and reactive 

power flows going from bus i to bus k at bus k border in the thj

subinterval, respectively.  

 The total loss of the network in the thj  subinterval can be 

calculated by the following equations: 

, , ,loss ik j i k j k i jp p p= +   (19) 
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2.2. Converting Inequality Constraints into Equality 

Constraints 

Since the F-MSG algorithm requires that all constraints need 

to be expressed in equality constraint form, the inequality 

constraints in the optimization model should be converted into 

the corresponding equality constraints. The following method is 

used for this purpose, since it does not add any extra 

independent variable into the optimization model in the 

conversion process [5]. The double sided 

inequality ,i i j ix x x− +≤ ≤ in the thj  subinterval can be written as 

the following two inequalities: 
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Then, we can rewrite the above inequalities as continuous 

equality forms by the following: 
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If , ,i i j ix x x− +≤ ≤  it is obvious 

that ,( ) 0,i j ix x+− ≤ ,( ) 0i i jx x− − ≤ and, ( ){ },
max 0, 0,

i j i
x x

+− =

( ){ },
max 0, 0.

i i j
x x
− − =  So the inequality constraints in (21) can 

be represented by the corresponding equality constraints in (22). 

In this paper the inequality constraints, given in equations (4)-

(9), are converted into the corresponding equality constraints in 

this way. 

3. The Modified Subgradient Algorithm Based on 

Feasible Values 
The nonlinear optimization problem for subinterval j  can 

 be represented in the standard form given below: 

,
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In order to be able to apply the F-MSG algorithm to the problem  

described in section 2, the objective function in subinterval j is

transformed into the form shown in equation (24). Necessary 

explanation about it is given in section 3.2. 

1 2( ) ( ), ( ), , ( )
EQNh h h =  !!h x x x x in (23) is the equality 

constraint vector in subinterval j. It includes all the original 

equality constraints in subinterval j, which are shown in (2)-(3), 

and the equality constraints in subinterval j, which are obtained 
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from converting all the inequality constraints shown in 

equations (4)-(9), into the corresponding equality constraints via 

the method given in Section 2.2. K  is a sufficiently large 

compact set containing the potential values of x . Region K is 

bounded by the upper and the lower limits of the voltage 

magnitudes of the buses in subinterval j and the upper and the 

lower limits of the tap settings of the transformers in subinterval 

j. Note that the voltage magnitude and phase angle of the 

reference bus, are not included into x  since they are not 

independent variables and remain constant during the solution 

process. In solving the constrained optimization problem given 

by equation (23), the first step is to convert it into unconstrained 

one by constructing the dual problem. This can be done by using 

various LaGrange functions [6]. LaGrange function must 

guarantee that the optimal solution of the dual problem be equal 

to that of the primal constrained problem. Otherwise, there will 

be a difference between the optimal values of these problems; in 

other words, a duality gap will occur. The classical LaGrange 

function guarantees the zero duality gaps for the convex 

problems. However, if the objective function or some of the 

constraints are not convex, then the classical LaGrange function 

cannot guarantee this. Therefore, for the non-convex problems, 

suitably selected augmented LaGrange functions should be 

used. Considering the non-convex nature of our problem, we 

form the dual problem by using the following sharp augmented 

LaGrange function: 
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where 1 2, , ,
EQNu u u ∈ℜ! (ℜ stands for the set of real numbers) 

and 0c ≥ are LaGrange multipliers (dual variables) in 

subinterval j. The dual function associated with the constrained 

problem is defined as
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Then, the dual problem is given by 
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For the given dual problem, the conditions of guaranteeing zero

duality gaps are proven in [7].  

3.1. The F-MSG Algorithm Applied into the 
th
j Subinterval of the Dispatch Problem 

Application of the F-MSG algorithm into the thj subinterval of 

the dispatch problem is explained in the following. 

Initialization Step: Select arbitrary initial active and reactive 

power generations for subinterval j. Then, perform an AC 

power flow calculation with selected active and reactive power 

generations to obtain the initial values for the voltage 

magnitudes and phase angles of the buses in subinterval j.

Calculate the initial total cost ,T jF for subinterval j by using the 

selected (or calculated) ψ  (pseudo water price) value.

Step 1) Choose positive numbers 1 2 1, ,ε ε ∆  and M (upper

bound for m) . Set =1,n 0,w = 0,z = and ,n T jH F= .

Step 2) Choose 1( , ) EQ
Nn n

1 c +∈ℜ ×ℜu  and (1) 0>"  and set

11, , ,n n
m 1 mm c c= = =u u

Step 3) Given ( , ),m mcu  solve the following constraint 

satisfaction problem (CSP) 
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m

T j m m m m m n
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x h x u h x
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If a solution to (28) does not exist or ( )m M>" , then go to Step 

6; otherwise, if a solution mx  exists then check 

whether ( )m = 0h x . If ( )h x = 0m  (or if 1( )m ε≤h x ) then go to 

step5, otherwise go to step 4. 

Step 4) Update dual variables as 

1 ( )u u h xα+ = −m m m ms    (29) 

1 (1 ) ( )h xα+ = + +m m m mc c s    (30) 

where  ms  is a positive step size parameter defined as 
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where α and λ are constant parameters with 0α >  and 

0 2.λ< <  Step size ms  corresponding to the dual variables 

( , )m mcu should also satisfy the following property: 

( )( ) ( )h x u+ − > "m m m ms c m .    (32) 

Set 1m m= + , update ( )m"  in such a way that ( )m →+∞"

as m →+∞ , and go to step 3. 

Step 5) If 0w = , it means that any infeasible total cost rate 

value has not been chosen yet, then set 1 ,n n+∆ = ∆ otherwise

set 1 (1/ 2) .n n+∆ = ∆  If 1 2n ε+∆ < , then stop, mx  is an 

approximate optimal primal solution, and ( , )m mcu is an 

approximate dual solution; otherwise set 

{ }1 , 1min ( ),n T j m n nH F H+ += − ∆x , 1,z z= + 1n n= + , and go 

to step 2. 

Step 6) If 0z = , it means that any feasible cost rate value has 

not been chosen yet, then set 1 ;n n+∆ = ∆ otherwise, set 

1 (1/ 2) .n n+∆ = ∆  If 1 2n ε+∆ <  then stop, and in this case, the last 

calculated feasible mx  is an approximate optimal primal 

solution, and ( , )m mcu is an approximate dual solution; 

otherwise, set 1 1n n nH H+ += + ∆ , 1w w= + , 1n n= +  and go to 

step-2. 

 The following problem is solved by using GAMS® solver: 

0

( , , ) 0n

Minimize f

L c H
Subject to

K

=

− ≤


∈

x u

x

   (33) 

where f  is a ‘fictitious’ objective function which is identically 

zero, or can be taken as any constant value [5]. The way of 

updating the dual variables ( , )m mcu  in step 4 will force the 

solution in Step 3 to converge to the feasible solution (see 

Theorems in [8]).  

Note that an AC load flow calculation is carried out only in 

the initialization step of the algorithm just to obtain the selected 

initial complex bus voltages. No more load flow calculation is 

carried out in the subsequent steps of the algorithm.  
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3.2 The Proposed Solution Technique for the Dispatch 

Problem
When the F-MSG algorithm is applied to the dispatch 

problems with specific ψ value for all subintervals of the 

considered problem, if the water constraint of the p-s unit is 

satisfied (see equation (11) or (12)), it means that the optimal 

solution is found. But if the water constraint is not satisfied, the 

following solution technique, where the F-MSG algorithm and 

common pseudo water price (ψ (R/acre-ft)) for the discharge  

and pumping rate functions of the p-s unit are used, is proposed 

to solve the dispatch problem described in the above. Two 

fictitious terms are added into the original fuel cost; water 

discharge cost (positive one) and water pumping cost (negative 

one) in equation (24). When ψ  gets higher and higher values, 

the p-s unit starts to pump more and more water amounts in 

subintervals with low load values and discharge less and less 

water amounts in subintervals with high load values. Therefore, 

net spentq given in (12) gets more and more negative values. When 

ψ  gets smaller and smaller values,  net spentq  takes more and 

more positive values. The matter in the following algorithm is to 

find a critical pseudo water price value so that the p-s unit water 

constraint given in (12) is satisfied within a selected tolerance 

value. From the optimal solution of the system without p-s unit, 

an average value of the cost rate for the thermal units for the 

operation period can be calculated. With the help of this average 

thermal cost rate, an average value of pseudo water price ( avgψ )

can be calculated by assuming that the p-s unit is operating in 

generation mode in subintervals with high load levels and 

pumping mode in subintervals with low load levels. In this 

calculation, the generation and pumping powers of the p-s unit 

can be taken as equal to midpoint of the generation and 

pumping power ranges, respectively. The proposed solution 

algorithm is given in the following. 

Step-1) Take avgψ ψ=
Step-2) Set _ 0, _ 0,test up test down= =  1j =

Step-3) Get the initial values of the independent variables for 

the current subinterval and solve the dispatch problem by using 

 the F-MSG algorithm. 

Step-4) Set 1j j= + . If maxj j>  then go to step-5; otherwise 

go to step-3. 

Step-5)Calculate spentTOT pumpTOTq q q= −
net spent

. If q TOL≤
net spent

then stop, the solution is obtained; otherwise go to step-6. 

Step-6) If _ 0 0test down and q= >
net spent

then set, 

_ 1,test down = lowψ ψ= and 1.5 ,high low highψ ψ ψ ψ= × =  and

1j = , go to step-3: otherwise go to step-7. 

Step-7) If _ 0 0test up and q= <
net spent

then set 

_ 1,test up = ,highψ ψ= 0.5 ,low high lowψ ψ ψ ψ= × = and 1j = ,

go to step-3; otherwise go to step-8. 

Step-8) If _ 1 _ 0 0net spenttest down and test up and q= = > then

set, 1.5 ,high highψ ψ ψ ψ= × =  and 1,j =  go to step-3; otherwise 

go to step-9 

Step-9) If _ 1 _ 0 0net spenttest up and test down and q= = < then

set, 0.5 ,low lowψ ψ ψ ψ= × =  and 1,j =  go to step-3; otherwise

go to step-10 

Step-10) If _ 1 _ 0 0net spenttest up and test down and q= = > then

set _ 1,test down = ,lowψ ψ= 0.5( )high lowψ ψ ψ= +  and 1,j =

go to step-3; otherwise go to step-11 

Step-11)If _ 1 _ 0 0net spenttest down and test up and q= = < then

set _ 1,test up = ,highψ ψ= 0.5( )high lowψ ψ ψ= +  and 1,j = go

to step-3; otherwise go to step-12 

Step-12) If _ 1 _ 1 0net spenttest up and test down and q= = > then

set, ,lowψ ψ= 0.5( )high lowψ ψ ψ= +  and 1,j = go to step-3; 

otherwise go to step-13 

Step-13) If _ 1 _ 1 0net spenttest up and test down and q= = < then

set ,highψ ψ= 0.5( )high lowψ ψ ψ= +  and 1,j =  go to step-3. 

3. Numerical Example 
The proposed dispatch technique was tested on an example power 
system that has 12 buses, five thermal units and a p-s hydraulic unit 
(connected to bus 6). Please refer to reference [3] for the 
necessary data related with the test system. 

 The initial parameters, explained in section 3.1, 3.2 are 

chosen as 5

1 5 10 ,ε −= × 25 , 0.05,TOL ccf ε= = 1 50 ,R∆ =
250,M = 1

1 (1 52)[0,0,...0,0] x=u , 1

1 2500,c =  ( )m m=" for all 

subintervals. The maximum active power transmission capacity limit 

for all transmission lines is taken as 150 MW. The upper and lower 

limits of the bus voltage magnitudes for all buses (except ref. 

bus) are taken as 0.9 pu and 1.1 pu, respectively. Reactive 

power generation limits for all units are taken as 

2.0 , 2.0max min
Gr GrQ pu Q pu= = − .

The thermal units connected to bus 9 and 11 are chosen as 
inefficient units with respect to the other thermal units. These 
thermal units' minimum generation limits are assumed to be as 
zero. If those units’ active generations drop below their actual 
minimum active generation limits during the optimization 
procedure, they are taken as equal to zero and those units are 
operated as synchronous compensators. We solved the dispatch 
problem for two cases where the p-s unit is off-line in case-1 
and on-line in case-2.
Case-1) We have applied the F-MSG solution algorithm given 
in Section 3.1 to the dispatch problems of all six intervals of the 
test system without the p-s unit by using the initial generations 
shown in Table 1. Table 2 shows the solution point generations, 
active loss and fuel cost values in all subintervals. It also 
contains the total fuel cost for the considered operation period; 

124987.1462 .TF R= The same dispatch problem was also solved 
by means of the PSPA where the total fuel cost was found to be 

125268.540TF = R [3]. It is seen from the presented figures that 
the F-MSG algorithm gives a total fuel cost that is 281.4 R 
lower than the one supplied by the PSPA algorithm. 
Case-2) In this case we have applied the solution algorithm 
given in Section 3.2 to the dispatch problem of the system with 
the p-s unit. We have also used the same initial generations, 
given in Table 1, in this case. Note that the p-s unit is taken as in 
idle operation mode initially in all subintervals (see the column 
with 6i =  in Table 2) With the help of data in Table 2 and in 
reference [3], the initial pseudo water price is calculated as 

5.0avgψ = R/acre-ft. The solution point data in this case is 
presented in Table 3. Negative and positive active powers in the 
column with 6i = in Table 3 represent pumping (load) and 
generation powers of the p-s unit, respectively. The total fuel 
cost in this case is found to be 124305.989TF = R. From
solution via the PSPA the total fuel cost value was found to be 

124604.982TF = R [3]. From the given figures, it is seen that the 
proposed method gives a total fuel cost that is 300 R lower than 
the one supplied by the PSPA algorithm. The change of qnet spent
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Table 1. Selected initial unit generations ( 100 )baseS MVA= .

i
j

Gen 

(pu) 1 4 6 7 9 11 

P 0.7720 0.45 0.00 0.40 0.20 0.20 
1

Q 0.0887 0.08 0.00 0.08 0.08 0.08 

P 2.5810 1.50 0.00 1.40 0.45 0.35 
2

Q 1.5261 0.70 0.00 0.70 0.70 0.70 

P 2.9778 1.70 0.00 1.70 0.55 0.45 
3

Q 1.3911 1.00 0.00 1.00 1.00 1.00 

P 2.5810 1.50 0.00 1.40 0.45 0.35 
4

Q 1.5261 0.70 0.00 0.70 0.70 0.70 

P 1.1043 0.70 0.00 0.60 0.35 0.30 
5

Q 0.5433 0.20 0.00 0.20 0.20 0.20 

P 0.7720 0.45 0.00 0.40 0.20 0.20 
6

Q 0.0887 0.08 0.00 0.08 0.08 0.08 

Table 2. Solution point generations of the thermal units, active 

loss and fuel cost values for case-1.

i
j ,LOSS jP

 (pu) 

Gen. 

(pu) 1 4 7 9 11 
,T jF (R)

P 1.120687 0.449999 0.464284 — — 
1 0.03498

Q 0.09647 0.107481 0.208685 0.109423 0.021402
11933.0349

P 2.801414 1.793206 1.749968 — — 
2 0.34459

Q 1.244917 0.737129 0.841460 0.770782 0.907631
26057.4631

P 3.109558 1.80000 1.749997 0.380683 0.363062
3 0.40333

Q 1.316160 1.030548 1.055186 1.036765 1.026195
33716.4652

P 2.799222 1.795185 1.749988 — — 
4 0.34443

Q 1.242847 0.747038 0.836033 0.767213 0.907430
26056.9539

P 1.273808 0.768846 1.030184 — — 
5 0.07285

Q 0.383335 0.109179 0.563497 0.249953 0.223700
15290.0380

P 1.092322 0.450004 0.491901 — — 
6 0.03427

Q -0.004501 0.122717 0.232010 0.101068 0.021403
11933.1911

( )TF R 124987.1462

Table 3. Solution point pu generations of the units, active loss 

and fuel cost values for case-1.
i

j ,LOSS jP

(pu)

Gen. 

(pu) 1 4 6 7 9 11 ,T jF (R)

P 1.741613 0.549161 -1.156998 0.945605 — — 
1 0.079371

Q 0.567267 -0.352467 0.055062 0.188376 0.176718 0.015946
15781.4661

P 2.524354 1.719509 0.336229 1.750000 — —
2 0.330094

Q 1.145830 0.708990 0.341458 0.576144 0.769927 0.915621
24890.7296

P 2.609415 1.798319 1.300009 1.749816 — —
3 0.457635

Q 1.010610 0.885057 -0.122814 1.750060 0.951334 1.140551
25437.7056

P 2.524354 1.719509 0.336229 1.750000 — —
4 0.330094

Q 1.145830 0.708990 0.341458 0.576144 0.769927 0.915621
24890.7296

P 1.834451 0.792560 -0.644999 1.143451 — —
5 0.125465

Q 1.069664 0.295330 -1.001902 0659725 0.262799 0.305414
17523.8929

P 1.741613 0.549161 -1.156998 0.945605 — —
6 0.079371

Q 0.567267 -0.352467 0.055062 0.188376 0.176718 0.015946
15781.4661

( )
T

F R 124305.989

versus ψ  is given in Table 4. The effect of  ψ  on the 

convergence of qnet spent  to 0 acre-ft is clearly seen from the 

table. The change of the stored water amount in the upper 

reservoir of the p-s unit with respect to its pumping/generation 

power is given in Table 5. The total active load values in each 

subinterval are also shown in Table 5.

4. Discussion and Conclusion 

In this paper, we propose an economic dispatch method based 
on F-MSG algorithm for a security constrained p-s unit 
scheduling problem. The dispatch technique is tested on 12-bus 
test system with 5 thermal units and a p-s unit. The inclusions of 
the p-s unit with 0.67 cycle efficiency into the power system 
decreases the total fuel cost from 124987.1462 R to 
124305.989R for the given daily load schedule, saving 681.15 R
daily. We are currently performing research on the application 
of the F-MSG algorithm to security constrained p-s unit 
scheduling problem with non-convex total fuel cost curve. To 
our knowledge, the proposed solution technique has not been 
applied to the problem considered in this paper. 

Table 4. The change of net spentq versus pseudo water price ψ

net spentq (acre-ft) 253.8569 -220.4578 98.7536 -45.2369 -12.2563 7.8547 -0.1559

ψ (R/acre-ft) 5 7.5 6.25 6.875 6.5625 6.40625 6.484375

Table 5. The change of the stored water amount versus 

pumping/generation power of the p-s unit. 

j 0 1 2 3 4 5 6 

V j (acre-ft) 10000 11417.0658 10348.0819 8508.0745 7439.0906 8583.0901 10000.1559

,s jP (pu) — -1.156998 0.336229 1.300009 0.336229 -0.644999 -1.156998

,LOAD jP (pu) — 2.0 6.0 7.0 6.0 3.0 2.0 

6. List of Symbols 

R : a fictitious monetary unit. 

N : number of buses in the network. 

SN : set that contains all thermal units in the network. 

B iN : set that contains all buses directly connected to bus i.

tapN , L : sets that contains all tap changing transformers and 

lines in the network, respectively. 

QN : set that contains all buses where a reactive power 

generator is connected. 

jt : length of time interval j.

,l jp : active power flow on line l in the thj  subinterval. 

, ,,G i j G i jP Q : active and reactive power generations of the thi unit

in the thj  subinterval, respectively. 

, ,,Load i j Load i jP Q :  active/reactive loads of the thi  bus in the thj

subinterval, respectively. 

,LOSS jP : total active loss in the thj  subinterval. 
max

lp : maximum active transmission capacityof line l .

EQN , VARN : number of equality constraints and independent 

variables, respectively. 

 Please refer to reference [3] for the meaning of the other 

symbols that are used in this paper. 
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