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Abstract

This paper presents a new diagnosis method for classifying
current waveform events that are related to a variety of
induction machine faults. The method is composed of two
sequential processes: feature extraction and classification.
The essence of the feature extraction is to project a faulty
machine signal onto a low dimension time-frequency
representation (TFR), which is deliberately designed for
maximizing the separability between classes. A distinct TFR
is designed for each class. The performance of fault
classification is presented using two types of classifiers
namely the Wavelet Neural Network (WNN) and the classical
Artificial Neural Network (ANN) with Levenberg
Marquardt algorithm. The flexibility of this method allows
an accurate classification independently from the level of
load. This method has been validated on a 5.5-kW induction
motor test bench.

1. Introduction

There is a considerable demand to reduce maintenance costs
and prevent unscheduled downtimes for electrical drive systems.
Recencement of electrical machine faults reveals that, bearing
faults, stator faults, and broken bars are the most prevalent,
although almost 40%-50% of all failures are related to bearing.
Bearing faults might manifest themselves as rotor asymmetry
faults [1] which are usually covered under the category of
eccentricity related faults. Stator faults are usually related to
insulation failure; they manifest themselves through phase-to-
ground connections or phase-to-phase faults. Also, stator faults
manifest themselves by abnormal connection of the stator
windings. Almost 30%-40% of all reported induction motor
failures fall in this category [2]. The rotor fault accounts for
around 5%-10% of the total induction rotor failures [2]. The
principal reasons for rotor bar and ring breakage are thermal
stresses due to thermal overload and unbalance. On the other
side, magnetic stresses are caused by electromagnetic forces,
unbalanced magnetic pull, electromagnetic noise, and vibration.

In recent years, many research works have been carried out
for the study and development of fault detection and diagnosis
methods of electric machines. Recent advances of signal
processing techniques, such as artificial neural networks [3],
wavelets [4], etc., have provided more powerful tools for fault
diagnosis.

Generally, system diagnosis uses signals either in time or
frequency domain. In our approach, it is potentially more
informative to join both time and frequency.

Usually, the objective of time—frequency research is to
create a function that will describe the energy density of a signal
simultaneously in time and frequency. For explicit classification,
it is not necessarily to accurately represent the energy
distribution of a signal in time and frequency. In fact, such a
representation may conflict with the goal of classification (i.e.
generating a TFR that maximizes the separability of TFRs from
different classes). It may be advantageous to design TFRs that
specifically highlight differences between classes [5]-[8].

TFRs can be uniquely characterized by an underlying
function called a kernel. In previous time—frequency research,
kernels have been derived in order to fulfill some properties,
such as minimizing quadratic interference, although some of the
resulting TFRs can offer advantages for classification of certain
types of signals. The goal of sensitive detection or accurate
classification is rarely an explicit goal of kernel design. Those
few methods that optimize the kernel for classification purposes
constrain the form of the kernel to predefined parametric
functions with symmetries that can not be suitable to detection
or classification [8]. For classification, the optimization
procedure of TFR via parameter kernel is very computationally
prohibitive. It would be better to use the optimal TFR that can
be classified directly in the ambiguity plane. We propose to
design and use the classifier directly in the ambiguity Doppler
delay plane. Since all TFRs can be derived from the ambiguity
plane, no a priori assumption is made about the smoothing
required for accurate classification. Thus, the smoothing
quadratic TFRs retain only the information that is essential for
classification.

In this paper, we have proposed a classification procedure
based on the design of optimized TFR from a time—frequency
ambiguity plane in order to extract the feature vector. We have
used two classifiers, namely the wavelet neural network WNN
and the classical artificial neural network ANN with Levenberg
Marquardt algorithm. We gave a theoretical background for the
wavelet neural network, then we presented its performance
compared to the ANN. In this study, the goal is to realize an
accurate diagnosis system of motor faults such as bearing faults,
stator faults, and broken bars rotor faults independent from the
level of load.

2. Classification Algorithm

The classification algorithm is composed of the following
two parts: extraction features and decision criteria. The details
of each step are described in the following paragraphs.

2.1. Feature Extraction

Here in this section, we briefly present the theory of the TFR.
The class-dependent TFR [5] is defined by
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TFRIn, K] = 2, F Ly dpln. 714l 21} )

where F represents the Fourier transform, F-I represents the
inverse Fourier transform, 5 represents the discrete frequency
shift, 7 represents the discrete time lag, n represents the sample
and £ is the discrete frequency.

The characteristic function for each TFR is defined by A(n,7)
@(,7). In other words, for a given signal, a TFR can be
uniquely mapped from a kernel. The classification-optimal TFRi
can be obtained by smoothing the ambiguity plane with an
appropriate kernel @opt, which is a classification optimal kernel.
The problem of designing the classification-optimal TFRi
becomes equivalent to designing the classification-optimal
kernel popt(n,7).

This method, used to design kernels and thus TFRs,
optimizes the discrimination between predefined sets of classes.
The resulting kernels are not restricted to any predefined
function but are rather arbitrary in shape. This approach
ascertains the necessary smoothing to achieve the best extraction
features.
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Fig. 1. Algorithm of separation between classes

Features can be extracted directly from A(1,7).Qopt(n,T)
instead of the classification-optimal TFRi. This shortcut
simplifies the computation complexity of feature extraction by
reducing greatly the calculations. For further details, we
recommend the reader to review our previous work [9].

Each kernel @opt(n,7) is designed for each specific
classification task. In our classification procedure, C — 1 kernels
must be designed for a C-class classification system. The
discrimination between different classes [5] is made by
separating the class i/ from all remaining classes {i + 1,...,N}
(Fig.1). In this case, the stator fault kernel is designed to
discriminate the stator fault class from the other classes such as
rotor fault, bearing fault, and healthy motor. The rotor fault
kernel is designed to discriminate the rotor fault class from the
remaining classes such as bearing fault and healthy motor. The
bearing fault kernel is designed discriminate the bearing fault
class from the healthy motor class. The advantage of the method
lies in the optimum separation between the different classes.

For the design of any kernel, we have to determine N
locations from the ambiguity plane, in such a way that the values
in these locations are very similar for signals from the same
class, while they vary significantly for signals from different
classes. For that task, we have used Fisher’s discriminant ratio
(FDR) to get those N locations.

The kernels are designed by / training example signals from
each class with the equation as follows:

(mi [777 T] B m,-_rgma,-y,[ﬂy 1'])2
I/71'2 [77’ T] + I/izremain[779 T]

FDR,(n,7)= )

where m,[n,7] and m,_,,,..[77,7] represent two means of

location (7,7)., V;’[n7,7] and V;?

i—remain

[17,7] two variances of
location (77,7 ).
We transform the FDR to Popt kernel in a binary matrix by

replacing the maximum N points with one and the other points
with zero. The Features can be extracted directly from
A(n,7)op(n,7) , where o is an element-by-element matrix

product. By multiplying the Popt kernel with a given signal

ambiguity plane, we will find N feature points for this signal.
We rank order them into a vector in order to create the training

feature vector F V;Z) (k) ofclass C

in
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where
(p{(,;)t[n,r] , training optimal kernel,

A(()[U,T] , mean class of the ambiguity plane.

Because the ambiguity plane of a signal is symmetric
according to two dimensions, only points on a quarter plane are
considered.

The factor of correlation is also considered. In this case,
only one point is selected as a feature among a group of points
that are highly correlated. These highly correlated points do not
contribute to classification [10].This suboptimal approach
improves the overall classification performance compared with
FDR alone.

2.2. Classification Using Artificial Neural Networks
2.2.1. Artificial Neural Networks

ANNs are particularly useful for complex pattern
recognition and classification tasks. The capability of learning
from examples, the ability to reproduce arbitrary non-linear
functions of input, and the highly parallel and regular structure
of ANN make them especially suitable for pattern classification
tasks [11,12].

ANNs are widely used in modeling, data analysis and
diagnostic classification [13]. The most frequently used training
algorithm in classification problems is the back-propagation (BP)
algorithm, which is used in this work also.

There are many different types and architectures of neural
networks varying fundamentally in the way they learn; the
details of which are well documented in the literature [13]. In
this paper, two neural networks relevant to the application being
considered, i.e., classification of induction machine faults data
will be employed for designing classifiers; namely the feed-
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forward neural network (FFNN) and the wavelet neural network
WNN.

Each of the three feed-forward artificial neural network
(FFNN) classifiers adopted in this algorithm for the
classification of three fault types, has three layers (input-hidden-
output). Extensive classification experiments were conducted to
determine the optimized neural network structures. The structure
of the FFNN for discriminating stator fault is 16-5-1 (input layer
node number-hidden layer node number-output layer node
number); the one for rotor fault is 15-6-1; the one for bearing
fault is 15-6-1. The transfer and training functions adopted for
the FFNN include: the hyperbolic tangent sigmoid transfer
function as the transfer function for the hidden layer, the linear
transfer function as the transfer function for the output layer, the
Levenberg-Marquardt back-propagation as the network training
function, the gradient descent learning function as the weight
learning function, and the mean squared error function as the
performance evaluation function. The inputs to the ANN are the
normalized feature values and the output of the ANN is the
binary decision made (Fig.5).

2.2.2. Wavelet Neural Networks

In this paper, a WNN was designed with one hidden layer
forward neural network with its node activation function based
on the so-called the Mexican hat wavelet basic function.

()=l —|xFE =

||X " denotes the Euclidean norm of X and d = dim(X).

The applications of WNN are usually limited to problems of
small input dimension. The main reason is that they are
composed of regularly dilated and translated wavelets. The
number of wavelets in the WNNs drastically increases with the
dimension [17].

Wavelet network training consists in minimizing the usual
least-squares cost function

N

J(0) =%Z(y; —»f “)

n=1

where vector @ includes all network parameters to be estimated:
translations, dilations, weights of the connections between
wavelets and output and weights of the direct connections; N is

the number of elements of the training set, y: is the output of

the process for example n and y" is the corresponding network

output.
The discretized version of the wavelet is
Won () = 2"y (2" x = ) )

The gradient-based techniques cannot be used to adjust wavelet
parameters.

Following [17], constructing a WNN involves two stages:
Firstly, construct a wavelet library W of discretely dilated and
translated versions of wavelet mother function i :

W={y, y,(x) =ay(a,(x—1,))}, 6)
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where x; is the sampled input, and L is the number of wavelets
in W. Then select the best M wavelets based on the training data
from wavelet library W, in order to build the regression

S () =D (%), Q)
iel

where 7 is an M-element subset of the index set {1, 2, ..., L} and

M<ZL.

Secondly, minimize the cost function

J(1)=min— [yk —Zu,-w,(x)j ®)

wiel N 47 icl

In principle such a selection can be performed by examining
all the M-elements subsets of . Some suboptimal and heuristic
solutions have to be considered. In the following, we propose to
apply two of such heuristic procedures.

The Residual based Selection

The idea of this method is to select, for the first stage, the
wavelets in #¥ that best fit the training data O} , and then
iteratively select the wavelet that best fit the residual of the
fitting of the previous stage.

Define the initial residual yy(k) = yi, £ = 1,...,N, with y; the
output observations in O," .

Set fy(x) =

wavelety ; that minimizes:

0; at stage i(i=1,...,M), search among W the

J(V/_/):iZ(}/[—l(k)_zujl//j(xk)\J > )

N il
where
—1 N

u; :(z (l//,,'(xk))zJ ZW; (x)7,,(k), (10)

k=1 k=1
and y;;(k) (k=1,...,N) are the residual of stage i-1.
Note /; =argmin,_,_, J(y,)
then /,, is the wavelet selected at stage i. Update f; and y;:
Si(0) = fia () +up(x)
7)) =y, (k) —up(x,), k=1...N (11)

Stepwise Selection by Orthogonalization

The above residual based selection procedure [16,17] does
not explicitly consider the interaction or the non orthogonality
of the wavelets in W. The idea of this alternative method is to
select, for the first stage, the wavelet in W that best fits the
training data O}V , and then iteratively select the wavelet that

best fits O while working together with the previously
selected wavelets.



ELECO 2011 7th International Conference on Electrical and

The number of wavelets, M, is chosen as the minimum of
the so called Akaike’s final prediction error criterion (FPE)
[17]:

JFPE(f) —n a/N2N (J}(xk)_yk)zs

where npa is the number of parameters in the estimator.
Ny = h(d +2)+d+1
h is the number of wavelets in the network, d is the dimension of
input vector.

After the initial WNN is constructed, it is further trained by
the gradient descent algorithms like least mean squares (LMS)
to minimize the mean-squared error (mse):

N

2

k=1

I+n,,/N
— pa/ L (12)

N

Z(yi - )A/(W))zs

i=1

1
J(w)=—
(w) N (13)

Where p(w) is the real output from a trained WNN at the fixed
weight vector w.

3. Experiment Results

The experimental bench consists of a three-phase
asynchronous-motor squirrel cage Leroy Somer LS 1328, IP 55,
Class F, T C standard = 40 °C. The motor is loaded by a
powder brake. Its maximum torque (100 Nm) is reached at rated
speed. This brake is sized to dissipate a maximum power of 5
kW. Fig.2 shows the motor bench.

The wear obtained on the bearings is a real one the bearings
have been provided by SECCO (Fig.3). For the rotor fault, the
bar has been broken by drilling the bar of the cage squirrel
(Fig.4). The 10% of power imbalance for simulating the fault of
imbalance stator is obtained with a variable auto-transformer
placed on a phase of the network (Fig.3). An acquisition of
current signals was carried out on a test bench. The sampling
rate is 20 kHz. The number of samples per signal rises to N =
100000 samples on an acquisition period of 5s. The data
acquisition set consists of 15 examples of stator current recorded
on different levels of load (0%, 25%, 50%, 75%, and 100%).
Different operating conditions from the machine were
considered, namely, healthy, bearing fault, stator fault, and rotor
fault. The training set is carried out on the first ten current
examples. The last five current examples are used to test the
classification.

3.1. Training Set

To overcome the load problem, each class of the training set
for the three faults and for the healthy machine is made of ten
examples of no-load current and ten other examples for the full
load. Consequently, we have 20 examples of training for each of
the three faults and 20 examples of training for the healthy
machine. Each signal is passed throw a low-pass filter and re-
sampled with a down-sampling rate of 50. Only the range of the
required frequencies is preserved. By down-sampling, the signal
dimension has been reduced greatly, and using a low-pass filter
is to avoid aliasing during down-sampling. The dimension of
ambiguity plane is (200x 200 = 40000) points; by considering
symmetry compared to the origin, we retain only the quarter of
ambiguity plane, which corresponds to N = 10000.
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Fig. 2. Test bench of the induction motor

Fig. 4. Rotor with one broken bar.

We have tested the signals which have not been classified in
the training set of the following three faults (bearing fault, stator
fault, and rotor fault) with various levels of load (25%, 50%,
and 75%). Five signal examples are taken for each fault and for
each load level. Thus, we will have 15 signal tests for each fault.

3.2. Decision by Neural Networks

According to the theory, if the number of nodes in the
hidden layer of the network is too small, the WNN may not
reflect the complex function relationship between the input data
and the output value. In contrast, a large number may create a
complex network that might lead to a very large output error
caused by over-fitting of the training sample. It was noticed that
the best performance was obtained for the training set with those
models whose hidden layer had 5 neurons or more Fig.6.

Against a few studies on the classification by wavelet neural
network which have shown some improvement in the
performance, our study demonstrates that this is not always as
hollowing out. The results presented in table 1 show that the
ANN with Levenberg Marquardt algorithm has a clear
superiority over the latter this is due mainly to the large size of
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the input vector (up to 15) because WNN are usually limited to
problems of small input

Table 1. Misclassification results with different classifiers:

Kernell Kernel2 Kernel3
FFNN 0/15 1/15 1/15
WNN 3/15 5/15 6/15
Performance is 2.16571e-010, Goal is 0
o
.
‘%; 1o
0°
10

0 20 40 60 80 100
100 Epochs

Fig. 5. Training curve for the ANN using Levenberg
Marquardt algorithm

Network Error
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0.3 q
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Fig. 6. Training curve for the WNN using conjugate gradient
4. Conclusion

In this paper, we have proposed a new fault
classification scheme of induction machine based on TFR
and criterion decision. We have based our classification
on the ambiguity Doppler-delay plane where all the TFRs
can be derived by a suitable choice of a kernel. Each type
of fault was characterized by specific kernel. We have
applied a suboptimal approach to exclude those kernel
points that are strongly correlated with higher ranked
kernel points. In the decision stage, the results obtained
from the neural network classifiers based on wavelet or
sigmoid as transfer functions, show that the ANN has a
clear superiority over the WNN. These results verify that
the classification scheme tested with experimental data
collected from the stator current measurement at different
loads, and with ANN as decision criteria is able to detect

and diagnose faults with high accuracy, independently of
the load condition and the type of the fault..
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