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ABSTRACT

The idea of the common vector of a class is to �nd

a unique common vector which represents the com-

mon properties or invariant features of the class.

The previous derivations of the common vector of a

class did not consider the distributions of the fea-

ture vectors in the other classes. The derivation

of the common vector considering the within- and

between-class variations in the multi-class case is

given in this paper. The Fisher's discriminant anal-

ysis is also given and compared with the proposed

method. The new idea of the common vector is ap-

plied to the isolated word recognition problems and

the recognition rates are provided.

I. INTRODUCTION

The common vector derived in the previous papers [1,2]

belongs to the within-class or the single class distri-

butions. Since it did not include the between-class or

inter-class distributions, one may tend to think that it

should produce low recognition rates. But the exper-

imental study showed that very high recognition rates

can be obtained with the previous common vector ap-

proach (CVA), i.e. 100% for the training set, 94%

for the test set of 17 isolated words. However when

the within-class and between-class distributions of the

classes are similar to the case shown in Fig. 1, the CVA

with within-class distributions does not obviously work

for the recognition purposes.

Therefore a more general approach considering the

between-class distributions as well as the within-class

distributions similar to the Fisher's linear discriminant

analysis (LDA)[3] is essential for the derivation of the

common vector of a certain class. In this paper, it

is shown that the common vector derived by consider-

ing the within-class and between-class distributions in

multi-class case can be e�ectively used in the isolated

word recognition problems.

In Section II, the CVA for the multi-class problems is

given. The experimental study with the classi�cation

criteria and the recognition rates obtained for the LDA
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Figure 1. Equal probability density contours of two

classes with the same common vectors.

and CVA methods are given in Section III. Section IV

gives the conclusion and discusses the results.

LINEAR DISCRIMINANT ANALYSIS (LDA)

The purpose is to pre-process the data so as to reduce

its dimensionality before applying a classi�cation prob-

lem. It also establishes a discriminant function. In this

section, the generalization of the Fisher's discriminant

to several classes is examined [5]. It is assumed that

the dimension of the input space is greater than the

number of classes, so that d>c. Totally d' discriminant

functions can be introduced as

yk = w
T

k
x (k = 1; 2; :::; d0)

where x is any feature vector and yk can conveniently

be grouped together to form a vector y. The weight

vectors fwkg can be considered to be the rows of a

matrix W, so that

y =Wx

The generalization of the within-class covariance matrix

to the case of c classes gives

SW =

cX
k=1

�k



where

�k =
X
n2Ck

(xn �mk)(x
n �mk)

T

and

mk =
1

Nk

X
n2Ck

xn

where Nk is the number of the feature vectors in class

Ck . The between-class covariance matrix is de�ned as

SB =

cX
k=1

Nk(mk �m)(mk �m)
T

where m is the mean of the total data set

m =
1

N

NX
n=1

xn =
1

N

cX
k=1

Nkmk

and N =
X
k

Nk is the total number of data points.

Fisher's criterion (metric) can be written in the form of

FFisher =
WSBW

T

WSWWT
: (1)

The maximization of this criterion yields the result that

the weight vectors fwkg are determined by those eigen-

vectors of S�1
W
SB which correspond to the d' largest

eigenvalues.

II. COMMON VECTOR FOR MULTI-CLASS

CASE

For a two-class case, we should �nd such an r-

dimensional subspace (r < d) that the projections of

the feature vectors of the classes C1 and C2 must be

close to their own means respectively. Within the same

subspace, the projections of the feature vectors of the

�rst class C1 must be far away from the mean of the

second class C2, also the projection vectors of the sec-

ond class C2 must be far away from the mean of the

�rst class C1.

If there are only two classes as in the LDA with the

means,

m1 =
1

N1

X
n2C1

xn and m2 =
1

N2

X
n2C2

xn

then the within-class optimization problem can be writ-

ten as

FW=
X
n2C1

rX
j=1

uT
jW

(xn�m1)(x
n�m1)

T
ujW=

rX
j=1

uT
jW
�1ujW

where �1 is the within-class covariance matrix of the

class C1 and ujW 's are the basis vectors of the subspace.

The metric FW should be minimized.

The insertion of uT
i
uj=f1 if i=j ; 0 if i6=jg including the

Lagrange multipliers �j for each uj , the minimization

problem yields

�1ujW = �jWujW

where the Lagrange multiplier �jW 's turn out to be the

smallest eigenvalues of the covariance matrices �1.

The between-class optimization problem can also be

written as

FB=
X
n2C1

rX
j=1

uT
jB
(xn�m2)(x

n�m2)
TujB=

rX
j=1

uT
jB
�BujB

where �B is a di�erent kind of the between-class co-
variance matrix of the LDA which shows the variance

of the feature vectors of the class C1 to the average fea-

ture vector of the class C2. In this case, the metric FB
should be maximized.

The maximization problem yields

�BujB = �jBujB

where the Lagrange multiplier �jB 's turn out to be the

largest eigenvalues of the covariance matrices �B .

The within-class and between-class optimization prob-

lems can be combined to obtain the following metric:

Fcom=
FW

FB
=

rX
j=1

uT
jW
�1ujW

rX
j=1

uT
jB
�BujB

(2)

The basis vectors of the subspace which minimize Fcom
are given by

(��1

B
�1)uj=�juj (3)

where �j 's are the smallest eigenvalues of the product

(��1

B
�1) and uj 's are the eigenvectors that correspond

to these eigenvalues.

The metric Fcom may solve the problem given in Fig.1.

The common vectors of the two classes are shown in

Fig.2 when the covariance matrix (��1

B
�1) given in (3)

is used. The derivation of the common vector for higher

number of classes is similar with the two-class case,

since the feature vectors of any class constitute one class

and the feature vectors of the remaining classes can be

considered as the feature vectors of the second class.

The common vector for all cases is determined by the

subspace which minimizes Fcom in (2), that is,

acom1
=

rX
j=1

(aT
ave1

uj)uj
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Figure 2. The common vectors are calculated in the

di�erence subspace which is the direction of the x2 axis.

The discriminant line in Figure 2 may be drawn to pass

through the average of the two commom vectors acom1

and acom2
. Or it could be determined from the Bayes'

theorem. One may note that this is a similar situation

with the linear discriminant analysis (LDA) in a two-

dimensional feature space. Since the Euclidean distance

is usually used in the more than two-dimensional sub-

space of an d-dimensional feature space, the decision

surface turns out to be a hypersphere within the sub-

space with its center pointed by the common vectors.

A two-dimensional feature space with a one-dimensional

subspace is shown in the following example.

Example 1: Let the points of the classes C1 and C2

be

x1
1
=[10 6]

T
x2
1
=[10 10]

T
x3
1
=[12 6]

T
x4
1
=[12 10]

T

x1
2
=[10 � 6]

T
x2
2
=[10 � 10]

T
x3
2
=[12 � 6]

T

x4
2
=[12 � 10]

T

The within-class and between-class covariance matrices

of C1 and C2 are:

�1=�2=

�
4 0

0 16

�
�B1=�B2=

�
4 0

0 1040

�

Then from (3),

��1

B 1
�1=�

�1

B 2
�2=

�
1 0

0 1=65

�

�2 = 1

65
indicates the direction that minimizes Fcom.

The basis vector for this subspace is then u2=[0 1]
T

which is the vertical direction. The common vec-

tor for the class C1 and C2 acom1
=[0 8]

T
and

acom2
=[0 � 8]

T
respectively.

III. EXPERIMENTAL RESULTS WITH THE

DECISION CRITERIA

For a feature vector ax of an unknown class, one can

easily obtain the remaining vector ax;remk
:

ax;remk
=

rX
j=1

(aT
x
ujk)ujk

The Euclidean distance between the common vectors

and the remaining vector is used as the decision crite-

rion and it is given in the following:

C� = argminjjax;remk
� acomk jj (4)

k

If the feature vector ax belongs to class Ck, then we

expect to have a minimum distance between ax;remk

and acomk .

In this study, 17 words which are numbers in Turkish

\s�f�r (zero), bir (one), iki (two), �u�c (three), d�ort (four),

be�c (�ve), alt� (six), yedi (seven), sekiz (eight), dokuz

(nine) " and Turkish words \a�c (open), kapat (close),

yanl��s (false), evet (yes), hay�r (no), ara (call), o�s (of-

�ce)" are sampled at a rate of 9600 Hz with 12 bit

accuracy [6]. This database yielded the same recogni-

tion rates with the TI-digit database in our previous

work [1,2]. These words are taken from 200 speakers

consisting of 127 male, 60 female, 13 children and they

are stored in PC medium. Each spoken word can be

represented as a vector. If the root-melcep parameters

are derived for each frame with 256 samples of each

word, the dimension of the feature vectors varied from

143 to 528 depending on the length of the spoken word.

The experiment is continued by taking the �rst n=120

elements of the feature vectors so that every word in

the database is represented by a (120x1) feature vector.

The number of feature vectors p in each class in the

training set is chosen to be p=150 for each class.

STUDY ON THE LDA

The criterion given in (1) is applied to the above

database for the isolated word recognition and the re-

sults are given in Table 1. The recognition rate of 88%

for 15 largest eigenvalues and of 85% for 12 largest

eigenvalues are obtained for the training and test sets

respectively. Since SB in (1) has no inverse, Fisher's

criterion can not be de�ned as

FFisher =
WSWW

T

WSBWT
: (5)

In order to use the criterion given above, the dimen-

sion of the feature vectors is reduced to 16 by using

the eigenvectors of the between-class covariance matrix

SB , since SB has a dimension of 16x16 which is one less

than the number of classes. The minimization of the

criterion given in (5) yields the result that the weight

values are determined by the eigenvectors correspond-

ing to d' smallest eigenvalues of S�1
B
SW . The de�nition

of the Fisher's criterion as in (5) is more meaningful



since FFisher has always a positive value. The mini-

mum value of the metric FFisher can approach to zero

as the best possible minimum value. However, the max-

imization of the metric may have a value which is too

large and not meaningful for the recognition purposes.

Two cases are investigated by using the feature vectors

with dimension reduced to 16.

a) The eigenvectors corresponding to the smallest eigen-

values of S�1
B
SW are used for the recognition purposes

by using (4) and the results are given in Table 1.

b) In the second case, within-class covariance matrix

SW is calculated for each class (SW 1;SW 2; :::;SW 17)

instead of one covariance matrix as in the LDA. There-

fore a di�erent subspace for each class is determined

from the corresponding within-class covariance matrix

SWk. Then two di�erent scores S1

k
and S2 for the test

vector are obtained for the SWk and SB respectively.

Final decision is given according to the minimum value

of jjS1

k
=S2jj and the results are given in Table 1.

STUDY ON THE CVA

Five cases are investigated by using the CVA.

a) First of all, a subspace for each class Ck by using

the metric Fcom is determined from the eigenvectors of

��1

Bk
�1k. When the eigenvectors corresponding to the

smallest eigenvalues of ��1

Bk
�1k are used in the deci-

sion criterion (4), the recognition rates obtained for the

training and test sets are given in Table 2.

b) In the second case, a di�erent subspace for each class

Ck is only determined from �1k. The eigenvectors cor-

responding to the smallest eigenvalues of �1k are used

in (4) and the recognition rates obtained for the training

and test sets are given in Table 2.

c) A di�erent subspace for each class Ck is only deter-

mined from �Bk. The eigenvectors corresponding to

the largest eigenvalues of �Bk are used in the following

criterion:

C� = argmaxjjax;remk
� acomk jj

k

The recognition rates for the training and test sets are

also given in Table 2.

d) In the fourth case, one score S1

k
is obtained from

the Euclidean distance between ax;remk
and acomk by

using the eigenvectors of �1k and another score S2

k
is

obtained from the eigenvectors of�Bk for each class Ck.

Then �nal decision is given according to the minimum

value of jjS1

k
=S2

k
jj. The recognition rates are also given

in Table 2.

e) In the last case, �nally the scores S1

k
and S2

k
ob-

tained in part (d) are combined to de�ne the following

criterion:

C�=index

�
min

1�k�17

�
marked(S1

k
) +marked(S2

k
)
	�

. (6)

Table 1. Recognition rates in the average obtained by

using the LDA as percentage

Training Set Test Set

�� S�1
W

SB S�1
B

SW


S1

k
=S2



 S�1
W

SB S�1
B

SW


S1

k
=S2




1 26 26 25 26 26 23

2 49 54 50 49 54 43

3 64 61 66 60 60 60

4 72 69 76 70 68 69

5 77 71 80 76 73 75

6 78 73 82 77 74 76

7 81 77 86 79 74 78

8 82 77 86 81 75 81

9 85 78 87 83 77 81

10 84 79 89 83 78 83

11 84 81 89 83 80 85

12 87 81 88 85 80 87

13 86 82 86 85 80 86

14 87 82 84 84 81 83

15 88 82 81 84 80 80

16 88 81 77 84 80 75

* The values of � denotes the number of smallest eigen-

values for the minimization problems and the number

of largest eigenvalues for the maximization problems.

Table 2. Recognition rates in the average obtained by

using the CVA as percentage

Training Set Test Set

�� a b c d e a b c d e

1 69 49 73 66 85 32 12 72 26 49

3 77 95 86 98 98 41 29 86 50 69

5 68 99 91 99 98 40 39 91 60 80

6 66 99 91 100 98 41 43 92 62 82

7 66 100 93 100 98 41 48 92 68 85

8 62 100 93 100 99 40 51 93 70 85

10 59 100 94 100 98 40 58 92 72 87

20 57 100 95 100 99 45 78 90 83 92

30 58 100 95 100 99 48 83 87 85 92

39 60 100 92 100 99 50 86 85 87 93

50 60 100 90 100 98 53 87 79 88 91

60 62 100 87 100 97 52 90 76 91 91

70 63 100 82 100 96 54 92 72 92 91

80 62 99 76 99 94 53 92 68 92 91

90 64 98 70 98 92 56 93 63 93 88

94 64 98 67 98 90 56 94 61 94 88

110 65 96 58 96 85 58 93 56 93 86

120 65 77 56 76 74 56 75 54 76 74

* The values of � denotes the number of smallest eigen-

values for the minimization problems and the number

of largest eigenvalues for the maximization problems.



In this criterion, the scores S1

k
obtained for 17 classes

are marked from the minimum to maximum and the

scores and S2

k
obtained for 17 classes are marked from

the maximum to minimum. Then �nal decision is given

according to (6) and the results are given in column (e)

of the Table 2.

IV. CONCLUSION

When the common vector for multi-class case (metric

Fcom) is compared with the Fisher's LDA, the classi�-

cation rates of the CVA is superior to that of Fisher's

LDA as seen from the comparison of the Tables 1 and

2. Especially in the training set, the CVA gives 100%

recognition rate for 6 smallest eigenvalues. However,

the LDA gives 89% as the maximum recognition rate in

the training set.

As seen from the Table 1, the best recognition rates

of 89% for the training set and of 87% for the test set

are obtained in part (b) of the LDA with the feature

vectors whose dimensions are reduced to 16 according

to the between-class covariance matrix SB .

In the CVA, the maximum recognition rate of 94% is

obtained in parts (b) and (d) for 94 smallest eigenval-

ues. In part (c) of the CVA, the maximum recognition

rate of 93% is obtained for 8 largest eigenvalues. If the

scores obtained for 17 classes in part (b) for 94 small-

est eigenvalues and the scores obtained in part (c) for

8 largest eigenvalues are combined as in the parts (d)

and (e) of the CVA, the recognition rates of 95% and

96% for the test set are obtained for parts (d) and (e)

respectively and these results are not given in the Table

2.

The work on de�ning a more useful metric for the multi-

class case is continuing.
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