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ABSTRACT 
In this study, the validity of the approximation used in 
the modeling of resonant inverter tuning loop is 
discussed. With this approach, the phase-frequency 
relation of a resonant load around load resonant 
frequency can be expressed as a linear function for a 
reasonably high quality factor load. Results are 
verified by simulations. 
 

I. INTRODUCTION 
The steady-state analysis of resonant inverters (RIs), or at 
least a part of it, is usually done by assuming that its load 
is driven by a sinusoidal voltage (for series RI) or 
sinusoidal current (for parallel RI). In fact, the load is 
excited by a square-wave current or square-wave voltage 
in a parallel inverter or series inverter, respectively. The 
response of a load with a reasonable Q factor (for instance 
Q≥2) to a square-wave driving would be nearly a 
sinusoidal waveform when excitation frequency f is about 
at its resonant frequency fr. It is well known that the band-
pass characteristics of the resonant load around fr and 
large attenuation at the harmonic frequencies lead to this 
behavior of the load. It can be easily shown that this 
approach gives more acceptable results when f gets more 
close to fr and Q of the load increases. This well-known 
simplification is used in this study to characterize the 
phase of the load with a simple yet acceptable expression. 
In this paper, this approach will be examined theoretically 
and visualized by using several plots. 
 

II. MODEL OF RESONANT INVERTER TUNING 
LOOP WITH VOLTAGE-OUTPUT CHARGE-

PUMP PHASE-FREQUENCY DETECTOR 
RIs are mostly used as supplies for induction heating and 
ultrasonic motor driving applications [1]. Ultrasonic 
measurements sometimes require an RI for the excitation 
of a resonant transducer at one of its resonant frequencies 
[2]. Since the power switches in RIs are operated at either 
zero voltage condition (parallel inverter) or zero current 
condition (series inverter), switching losses are normally 
less than that of the other inverter types [1]. In order to 
maintain zero voltage or zero current switching conditions 

against the load parameter variations, a frequency control 
circuitry is required in an RI. Phase-locked-loop (PLL) 
technique is commonly used for this purpose [3]. This 
loop adjusts operating frequency ( f ) of the RI by forcing 
the phase difference between load current and load 
voltage to be zero. This is the ultimate goal of the control 
loop and when it is achieved f becomes equal to the load 
resonant frequency ( fr ). 
 
Charge-pump phase-frequency detector (CP/PFD) offers 
some advantages over other types of phase detectors for 
tuning loop of RIs. Utilization of a CP/PFD, disregarding 
voltage or current output type, in the tuning loop of an RI 
eliminates the necessity of an integrator circuit while 
loops having a phase detector without tri-state property 
require an integrator circuit for zero steady state phase 
error [2]. A diagram of a tuning loop, which uses a 
CP/PFD, is shown in Figure 1. Operating frequency of an 
RI is produced by the voltage-controlled oscillator (VCO) 
in this scheme. In the tuned condition, output of the 
CP/PFD remains continuously at its open circuit state and 
filter preserves correct voltage value to drive the load at fr 
through the VCO. Some commercially available PLL 
chips such as well known MC14046B [4], which is 
frequently employed in RI applications, contain a voltage 
output CP/PFD rather than a CP/PFD with well-known 
output property. Therefore, a behavioral modeling can be 
useful for the design of frequency control loops which 
employ voltage output CP/PFD and may provide a deep 
insight into the operation of these loops. 
 

Figure 1. Simplified scheme of an RI tuning loop 
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Figure 2. The model for tuning loop with a voltage output 
CP/PFD and simple RC filter for θ > 0 

 
Figure 2 depicts the model for RI tuning loops that 
contain CP/PFD. This model is proposed in our early 
work [5] for positive θ values. The detailed analysis and 
the experimental confirmation of the model are presented 
in [5]. It uses the fundamental frequency approximation 
for behavior of resonant load. This approximation yields 
that a resonant load with a reasonable Q can be 
characterized as a constant. In the following, the 
derivation of this approximation is given. 
 

III. FUNDAMENTAL FREQUENCY 
APPROXIMATION 

The following analysis uses frequency values normalized 
to ωr (angular resonant frequency) for the purpose of 
generality. Let a series resonant load shown in Figure 3 be 
excited by a square-wave voltage source with an angular 
frequency of ω around ωr. Let us define rωω=Ω  as 
the normalized source frequency. Since the excitation 
signal is composed of various harmonics then for the nth 
harmonic, the impedance presented by the load to this 
harmonic component of the source Zn(ω) can be expressed 
as 
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Using the normalized frequency Ω value, the above 
expression becomes 
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Figure 3. The circuit demonstrating fundamental 
frequency approximation 

 
From the circuit theory, we can write the nth harmonic 
phasor as of si  as 
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Here Vn is the nth harmonic content of the source sv  and 
similarly In denotes the nth harmonic phasor of the current 
in Figure 3. Defining the nth harmonic admittance 

)( rnY ωΩ  as 
 

)(1)()( rnrnr ZYnY ωωω Ω=Ω=Ω   (4) 
 
and, in terms of harmonic admittance, (3) can be rewritten 
as 
 

)()()( rnrnrn YVI ωωω Ω⋅Ω=Ω  (5) 
 
Remembering that the Q factor of the load in Figure 3 is 
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By combining (6) with (1) and (4), )( rnY ωΩ  can be 
expressed as 
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In the following analysis Q is assumed to be known and 
the square-wave driving signal has a transition at t=0 thus 
it consists of only odd harmonics magnitudes of which are 
decreasing with proportional to 1/n. This way, the si  
current of Figure 3 can be expressed from (5) as below 
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For simplicity, the square-wave fundamental magnitude is 
assumed to be unity. Since it is not possible to deal with 
infinite number of harmonics numerically, a limit is 
needed to be taken on n, which is selected here as 49. 
Then we can write for )(tis  
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To get the phase of is(t) referenced to vs(t), the solution of 
is(t)=0 around t=0 should be found. Using (9), we can 
write 
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A close look into (10) reveals that taking 1=srCω  in 
(7) will not alter the solutions of the t values, which 
satisfy this equation. Input source, on the other hand, is 
assumed to have a zero crossing at t=0, therefore one of 
the solutions of 0)( =tis , say t1, is directly related to the 

phase of )(tis . From among the solutions of (10), let us 
denote the one with the minimum absolute value as t1. If 

we could determine this t1, then we can calculate the 
phase of the resonant load current from it. This is due to 
the fact that the phase of the current in a series resonance 
circuit is less than |π/2| rad when driven by a periodic 
source signal. Inserting 11 tt rωωθ Ω==  (here θ is the 

phase of )(tis ), if we rewrite (10) in terms of θ then we 
obtain 
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The phase of θ could be calculated from this equation for 
any normalized frequency Ω if ωr and Cs are known and 
placed into (7). However an examination of (7) and (11) 
reveals that an assumption of ωr = 1 and Cs = 1 would 
never alter θ against Ω characteristic defined implicitly by 
(11). 
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Figure 4. Current phase against frequency curves of a series resonant circuit obtained using three different 

approximations: (a) Q=1, (b) Q=2, (c) Q=5, (d) Q=10; ∆: square wave driving approximated by using fundamental and 
upto 49th harmonics, *: fundamental frequency approximation (FFA), o: approximated characteristics for FFA 



IV. SIMULATION RESULTS 
A MATLAB routine (see Appendix), which calculates θ 
as absolute minimum for a given Ω, is written to verify 
the phase approximation used in this paper. In this 
routine, load Q is given as a parameter and it calculates 
phase against normalized frequency characteristics. For a 
better interpretation of these characteristics, the plots 
given in Figure 4 are arranged in such a way that they use 
axis parameter (Ω-1) or ∆ω/ωr rather than Ω. Three 
curves against ∆ω/ωr are introduced in each plot. One of 
them is obtained as just described in this Appendix taking 
into account source harmonics up to 49th, while the second 
is obtained by assuming that vs in Figure 3 is a sinusoidal 
source (Fundamental Frequency Approximation). The 
third characteristic given in each plot is a tangent line to 
that of the second characteristic obtained assuming a 
sinusoidal source. In this paper, the phase characteristic of 
a resonant load is expressed with the equation 
 

)(2 rQ ωωθ ∆−=   (12) 
 
which is the slope of above tangent line. Note that this 
phase approximation is obtained by applying two 
approximations sequentially. The plots given for Q=1, 
Q=2, Q=5, and Q=10 values clearly indicate that (12) is a 
good approximation for the phase of a load for reasonable 
Q values such as Q≥2. 
 
Similarly, the voltage phase versus ∆ω/ωr characteristics 
could be obtained for a parallel resonant load driven from 
a square-wave current source. With a little work it can be 
seen that the phase versus frequency characteristics of the 
series and parallel resonant loads are exactly the same. 
The only difference is that in the case of parallel resonant 
load, θ represents the phase of the load voltage with 
reference to its driving current source. Therefore the 
analysis introduced in this paper, which uses the 
approximation )(2 rQ ωωθ ∆−= , is equally 
applicable to both the series and parallel resonant loads. 
The only difference is that in a parallel RI θ is the phase 
of the load voltage referenced to its current excitation 
form because of the fact that in practice parallel resonant 
loads are driven by a current source. 
 

V. DISCUSSION 
It is observed that the plots in Figure 4 produce confusing 
results after a certain value of ∆ω/ωr beyond well above 
the limit of ±0.4 taken in this study, which depends on Q. 
For example, the value of θ calculated for an excitation 
which includes all the harmonics of a square wave up to 
the 49th one, e.g. ∆ω/ωr =0.6 and Q=10, is observed to be 
very different from the θ plot which would be obtained for 
the same parameters of the sinusoidal excitation. This is 
due to the fact that the excitation frequency in this 
situation becomes different from the frequency of load 
current (for a series resonant load) or the frequency of the 

load voltage (for a parallel resonant load) and it cannot be 
mentioned about a phase difference. It results in a 
complex but periodic signal at a frequency that is three 
times of the load driving frequency. For instance, third 
harmonic of the current in a series resonant load 
dominates and frequency of the current becomes three 
times of the excitation. 
 
The behavior of the tuning loop in such a case could be 
very different depending on the type of the phase detector 
in the loop. For example, since a PFD could also detect 
the difference in frequency, the tuning could be achieved 
by steering the loop frequency in the correct direction in 
the case of a loop, which uses this PFD. On the other 
hand, if a multiplier type phase detector is used in a loop, 
then the loop could have null frequencies other than the ωr 
frequency and the tuning could not be achieved by the 
loop. This situation is similar to the mechanism 
encountered in PLL circuits using PFD where there is no 
harmonic locking and to the mechanism seen in PLL 
circuits using multiplier phase detector in which there is a 
disadvantage of harmonic locking. 
 

VI. CONCLUSION 
The applicability of fundamental frequency 
approximation in the phase of resonant load is discussed. 
This approximation was previously used in the model of 
RI tuning loops that employ voltage-output CP/PFD [5] 
without its derivation. Here we give its analysis and 
verification in detail. As a result of this approximation, it 
is concluded that the phase of a resonant load with a 
reasonable Q can be characterized as a constant around its 
resonant frequency. Derived plots show that the 
approximation will give acceptable results for a Q value 
between 1 and 10. 
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APPENDIX 
 
 
NOTE: The Q (Quality Factor) of the load should be given at the 10th row of the 
program as Q = number. This value is selected as 5 as a default value in the 
following code. 
 
 
%   Y(n) = i*n*omega / ((1-n^2*omega^2)+i*(n*omega/Q)) 
% 
% and 
% 
%   Ut = sum(1/n*abs(Y(n))*sin(-n*teta+Y(n))) 
% 
% Problem : Find theta that minimizes Ut. 
% 
clear;clc;close('all'); 
Q=5; 
omega=linspace(0.6,1.4,30); 
n=1:2:50; 
n1=1; 
theta=-pi/2:.001:pi/2; 
for j=1:length(theta) 
    for k=1:length(omega) 
        Y=i*n*omega(k)./((1-n.^2*omega(k)^2)+i*(n*omega(k)/Q));         
        Y1=i*n1*omega(k)./((1-n1.^2*omega(k)^2)+i*(n1*omega(k)/Q));         
        U(j,k)=sum(1./n.*abs(Y).*sin(-n*theta(j)+angle(Y)));         
        U1(j,k)=sum(1./n1.*abs(Y1).*sin(-n1*theta(j)+angle(Y1)));            
    end 
     
end 
 
for m=1:30, 
    f(m)=theta(find(abs(U(:,m))==min(abs(U(:,m)))))*180/pi; 
    f1(m)=theta(find(abs(U1(:,m))==min(abs(U1(:,m)))))*180/pi; 
end 
model = -2*Q*(omega-1)*180/pi; 
ind_model = find(model <= 100 & model >= -100); 
ind_omega = find(omega >= 0.85 & omega < 1.15); 
figure; 
axes('Box','on'); 
hold on; 
title(['\fontsize{14}' 'Q = ' num2str(Q)]); 
plot(omega(1:2:end)-1,f(1:2:end),'k*',omega(1:2:end)-
1,f1(1:2:end),'k^',omega(ind_model)-1,model(ind_model),'ko'); 
 
 
 
legend('\fontsize{10}n = 1 : 49','\fontsize{10}n = 1', ['\fontsize{10}' '\theta' 
' = 
-2 * 180 / pi * Q * ' '\Delta\omega/\omega_r']); 
plot(omega-1,f,'k-',omega-1,f1,'k-',omega(ind_model)-1,model(ind_model),'k-'); 
xlabel('\fontsize{14}\Delta\omega/\omega_r'); 
ylabel('\fontsize{16}\theta \fontsize{14}(degree)'); 
grid; 
 


