
ADAPTIVE NEURO-FUZZY AIDED KALMAN FILTER FOR TARGET
TRACKING

İlke Titi1   Kerim Güney2

e-mail: titi@erciyes.edu.tr e-mail: kguney@erciyes.edu.tr

1Erciyes University, Civil Aviation School, 38039, Kayseri, Turkey
2Erciyes University, Faculty of Engineering, Department of Electronics Engineering, 38039, Kayseri, Turkey

Key words: Target tracking, Kalman filter, fuzzy inference systems, neural network

ABSTRACT
In this work, an adaptive neuro-fuzzy system aided Kalman
filter (KF) for target tracking is presented to reduce the
prediction errors of KF. Target trajectories are obtained
from the real aircraft radars such as cargo, bomber, fighter
and commercial aircrafts. Adaptive neuro-fuzzy system is
trained by using the parameters of KF and is used for
modeling the errors of KF. It was shown that the results of
the adaptive neuro-fuzzy system aided KF are better than
those predicted by the KF and also by the neural network
aided KF.

I. INTRODUCTION
Target tracking is an important issue in military
surveillance systems, especially when such systems
employ multiple sensors to interpret the environment. A
target tracking KF estimates the state of a maneuvering
target from noisy radar measurements in the polar
coordinates [1].

KF is effective for simple scenarios such as in a clutterless
environment or a single sensor single target tracking.
However, under dense target environment, extraneous
sensor reports may be incorrectly used by the KF for track
update, thus resulting in degraded performance, possibly
loss of track may occur.  Because of shortcomings of the
KF approach, a hybrid neural network (NN) approach is
proposed by Chin [2] for tracking a non maneuvering
target in one dimension two state scenario. His approach
combines the estimation capability of the KF and the
learning capability of the NN thus resulting in improved
tracking accuracy. This approach is developed later for
multiple maneuvering targets [3,4]. For tracking the
maneuvering targets, the complex modeling requirement
in the KF is also eliminated by the back propagation
neural networks in [3,4]. Moreover, the real
implementation time is reduced to the sum of the
acceleration model implementation time and the NN
recall time which is lesser than the computational
requirements of the existing interacting multiple model
tracking schemes.

In previous works [5-13], we also successfully introduced
NNs and fuzzy inference systems (FISs) to compute the
various parameters of the triangular, rectangular and
circular microstrip antennas. The purpose of this study is
to show an improvement in target tracking by using an
adaptive neuro-fuzzy system aided Kalman filter
(ANFSAKF). The simulation results of ANFSAKF are
compared with by the KF and also by the neural network
aided Kalman Filter (NNAKF).

II. KALMAN TRACKING ALGORİTHM
For the estimation of target position and velocity from
track data, it is common to use recursive Kalman filtering
algorithms. The motion of a target being tracked is
modelled as

ttt qXX +Φ=+1 (1)
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where Φ describes the system dynamics, ∆t is sampling
interval and corresponds to time interval assumed
uniform, at which measurement data are received, I3
denotes the (3x3) identity matrix and 03 represents the
(3x3) null matrix. In equation (1), Xt represents position
and velocity in each of the Cartesian coordinates axes x,
y, z as
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where x,
.
x and 

..
x are the target position, velocity and

acceleration along x axis at time t, respectively, and T is
the transpose operation. In equation (1), qt is zero mean,
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white and Gaussian process noise with assumed known
covariance Q.

Measurements are in the form of linear combination of the
system state variables, corrupted by uncorrelated noise.
The m-dimensional measurement vector is modelled as

ttt vHXZ += (4)

where H is measurement matrix given by [I3 03 03]; vt is
the zero-mean, white Gaussian measurement noise with
covariance Rc.

The Kalman algorithm works in two stages, viz., time
update and measurement update. Time update equations
are given by

1|11| −−− Φ= tttt XX (5)

QPP T
tttt +ΦΦ= −−− 1|11| (6)

and measurement update equations are given by
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1|| ][ −−= ttttt PHKIP (8)

][ 1|1|| −− −+= tttttttt HXZKXX (9)

The working of the Kalman algorithm is as follows. At
time t, before the measurement yt is received, using the
previous filtered estimate Xt-1|t-1 and filtered error
covariance Pt-1|t-1 the best estimate of the state Xt|t-1 and the
corresponding Pt|t-1 are obtained using the equations (5)-

(6). This is referred as time update stage. Once the
prediction is completed the Kalman gain Kt is evaluated.
As soon as the measurements are available the innovation
Zt-HXt|t-1 is determined. The innovation is weighed by the
gain Kt to correct the predicted state estimates. In the
measurement update stage of the algorithm, the filtered
state estimate Xt|t and filtered error covariances Pt|t are
obtained using equations (8) and (9). The algorithm then
awaits the next measurement at time t+1 and the above
process is repeated for each of the subsequent
measurements.

III. ADAPTIVE NEURO-FUZZY SYSTEM AIDED
KALMAN FILTER (ANFSAKF) FOR TARGET

TRACKING
The basic concept of ANFSAKF method proposed in this
work is shown in Figure 1. To reduce the estimation error,
an adaptive neuro-fuzzy inference system is employed to
aid the KF.

ANFIS, known as Adaptive Neuro-Fuzzy Inference
System, is used for constructing a set of fuzzy IF-THEN
rules with appropriate membership functions [14,15]. The
basic idea behind these neuro-adaptive learning
techniques is very simple. These techniques provide a
method for the fuzzy modeling procedure to learn
information about a data set, in order to compute the
membership function parameters that best allow the
associated fuzzy inference system to track the given
input/output data. This learning method works similarly to
that of neural networks. With a gradient descent or back
propagation algorithm based on the training data of
desired input-output pairs, ANFIS is to tune the
membership functions of a fuzzy inference system to
minimize the rms error.

Figure 1. ANFSAKF Target Tracker.

Tracking
Parameters

[(X)x]

Improved
Tracks[(Error)x]

[(Xt|t)x

[(Zt)x-(Xt|t)x]

[(Xt|t-1)x-(Xt|t)x]

Kalman
Filter

ANFIS +



The parameters associated with the membership functions
will change through the learning process. The computation
of these parameters (or their adjustment) is facilitated by a
gradient vector, which provides a measure of how well the
fuzzy inference system is modeling the input/output data
for a given set of parameters. Once the gradient vector is
obtained, any of several optimization routines could be
applied in order to adjust the parameters so as to reduce
some error measure (usually defined by the sum of the
squared difference between actual and desired outputs).
ANFIS uses either back propagation or a combination of
least squares estimation and backpropagation for
membership function parameter estimation. In this study,
ANFIS with back-propagation algorithm is pretrained using
the difference between the range measurement (z) and
estimated range ( t|tx ) and the difference between the
predicted range (xt|t) and estimated range (xt|t-1 ).

IV. RESULTS AND CONCLUSIONS
In this paper, ANFSAKF was applied to reduce tracking
error of maneuvering targets in a cluttered environment. To
achieve good results of tracking performance, a given set of
training data should be processed many times so that the
best trained data is selected for the simulation programs. In
this simulation, each set of data pairs (3300*3 matrix) is
trained continuously for 10 times, and the FIS matrix with
small error is selected. Target trajectories are obtained from
real aircraft radars such as cargo, bomber, fighter,
commercial aircraft [16]. In this study, the trajectory of a
cargo aircraft which is shown in Figure 2 was used. Only,
the x position results of this target was given. It was
observed that the types and numbers of MFs affect on the
rms training error of ANFIS. In this work, the best results
were obtained from the triangular MF with the number of 4.

The output of training data set (Error of KF) is given in
Figure 3a. Figure 3b shows the output of ANFIS. It is
apparent from Figure 3 that the output of the KF is very
similar to that of ANFIS. To decrease the tracking error of
KF, the output of ANFIS is aided to the estimation of KF.
Thus, the complex modelling requirement in the KF for
tracking the maneuvering targets is also eliminated by the
adaptive neuro-fuzzy system.

In Figure 4, the tracking performance of the ANFSAKF is
compared with that of the KF for x position. It is evident
from Figure 4 that the ANFSAKF tracks are closer to the
original tracks than the tracks predicted by the KF. In
Figure 5, the tracking errors of the ANFSAKF are also
compared with those of the KF and the NNAKF. It can be
seen from Figure 5 that the results of the ANFSAKF are
better than those of the KF and the NNAKF. Similar good
results were obtained for y and z positions and another
target trajectories. The good agreement between the
original tracks and the ANFSAKF tracks supports the
validity of the ANFSAKF. The advantages of the
ANFSAKF are the simplicity and accuracy.
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Figure 2 Trajectory of Target
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Figure 3. (a) Output of training data set (Error of
Kalman Filter) (b) Output of ANFIS
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0 20 40 60 80 100 120 140 160
-500

0

500

time (s)

er
ro

r o
f K

F 
(m

)

0 20 40 60 80 100 120 140 160
-20

0

20

time (s)

er
ro

r o
f N

N
 a

id
ed

 K
F 

(m
)

0 20 40 60 80 100 120 140 160
-5

0

5
x 10-3

time (s)

er
ro

r o
f N

F 
ai

de
d 

K
F 

(m
)

(a) 

(b) 

(c) 

Figure 5. Error of (a) KF, (b) NNAKF and (c) ANFSAKF

REFERENCES
1. R.A. Singer, Estimation of Optimal Tracking Filter

Performances for Manned Manoevuring Targets, IEEE
Transactions Aerospace and Electronic Systems, AES-
6, pp. 473-483, 1970.

2. L. Chin, Application of Neural Networks in Target
Tracking Data Fusion, IEEE Transactions on
Aerospace and Electronic Systems, Vol. 30, No. 1, pp.
281-287, 1994

3. K. Güney, İ. Titi, Target Tracking With the Use of
Neural Networks, Journal of the Institute of Science
and Technology of Gazi University, Vol. 13, pp. 649-
663, 2000 (in Turkish).

4. V. Vaidehi, N. Chitra, C.N. Krishan, M. Chokka-
lingam, Neural Network Aided Kalman Filtering for
Multitarget Tracking Applications, Radar Conference,
The records of the 1999 IEEE, pp. 160-165, 1999.

5. S. Sagiroglu, K. Güney, M. Erler, Resonant Frequency
Calculation for Circular Microstrip Antennas Using
Artificial Neural Networks, Int. J. of RF Microwave
and Millimeter-Wave Computer-Aided Engineering.
Vol. 8, pp. 270-277, 1998

6. S. Sagiroglu, K. Güney, Calculation of Resonant
Frequency for An Equilateral Triangular Microstrip
Antenna Using Artificial Neural Networks, Microwave
and Optical Technology Letters, Vol. 14, No. 2, pp. 89-
93, 1997.

7. S. Sagiroglu, K. Güney, M. Erler, Calculation of
Bandwidth for Electrically Thin and Thick
Rectangular Microstrip Antennas With The Use of
Multilayered Perceptrons, Int. J. of RF and
Microwave Computer-Aided Engineering, Vol. 9,
pp. 277-286, 1999.

8. D. Karaboga, K. Güney, S. Sagiroglu, M. Erler,
Neural Computation of Resonant Frequency of
Electrically Thin and Thick Rectangular
Microstrip Antennas, IEE Proc. Microw. Antennas
Propag., Vol. 146, No. 2, pp. 155-159, April 1999.

9. D. Karaboga, K. Güney, S. Sagiroglu, M. Erler,
Neural Computation of Resonant Frequency of
Electrically Thin and Thick Rectangular
Microstrip Antennas, IEE Proc. Microw. Antennas
Propag., Vol. 146, No. 2, pp. 155-159, April 1999.

10. D. Karaboga, K. Güney, S. Sagiroglu, M. Erler,
Neural Computation of Resonant Frequency of
Electrically Thin and Thick Rectangular
Microstrip Antennas, IEE Proc. Microw. Antennas
Propag., Vol. 146, No. 2, pp. 155-159, April 1999.

11. K. Güney, M. Erler, S. Sagiroglu, Artificial Neural
Networks for The Resonant Resistance Calculation
of Electrically Thin and Thick Rectangular
Microstrip Antennas, Electromagnetics, Vol. 20,
No. 5, pp. 387-400, 2000.



12. Ş. Özer, K. Güney, A. Kaplan, Computation of the
Resonant Frequency of Electrically Thin and Thick
Rectangular Microstrip Antennas with the Use of
Fuzzy Inference Systems, International Journal of RF
and Microwave Computer-Aided Engineering, Vol. 10,
pp. 108-119, 2000.

13. A. Kaplan, K. Güney, Ş. Özer, Fuzzy Associative
Memories for the Computation of the Bandwidth of
Rectangular Microstrip Antennas with Thin and Thick
Substrates, International Journal of Electronics (IJE),
Vol. 88, No. 2, pp. 189-195, 2001.

14. I.P.W. Ching, L. Yongzhi, L. Chin, D. Mital, Neuro-
Fuzzy Techniques for Airborne Target Tracking, 1988
Second International Conference on Knowledge-Based
Intelligent Electronic Systems, pp. 251-257, 21-23
April 1998.

15. J.S.R. Jang, G. Ned, Fuzzy Logic Toolbox User’s
Guide, The Math WorksInc, 1995.

16. W.D. Blair., G.A. Watson, T. Kirubarajan, Y. Bar-
Shalom, Benchmark for Radar Allocation and Tracking
in ECM, IEEE Transactions on Aerospace and
Electronic Systems, Vol. 34, No. 4, pp. 1097-1114,
1998.


