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Abstract 
 

Object counting has been used in many areas such as 
medical and industrial applications. It is a challenging 
problem to count the target objects in high speed. It is useful 
to implement image processing applications using the high 
capability computational power offered by Cellular Neural 
Network type analog processor named as ACE16k.  In this 
paper, we implement an efficient object counting algorithm 
working on ACE16k chip. Our results have proved that the 
proposed algorithm can count objects on a given image 
rapidly and accurately. 
  

1. Introduction 
 

Counting objects in images is necessary in various 
applications, such as counting people on roads or birds in the 
sky, packaging, and quality control in industrial systems, etc. 
Object counting is a simple task with human efforts. But it is 
necessary to develop automated methods for object counting 
using computer vision to reduce human efforts.  

In generally, the studies related to task of object counting 
are based on detection of target objects. Objects on an image are 
labeled and indexed by a finding algorithm. This process is very 
time consuming [13]. Using an algorithm based on Cellular 
Neural Networks (CNNs) for counting objects reduces time 
consuming. In previous works, Seiler [11] and Fasih et al. [9] 
developed different object counting methods using CNN. These 
works are based on software simulations. Our proposed 
algorithm works on Bi-i Cellular Vision System which has two 
type microprocessors - Ace16k and Digital Signal Processor 
(DSP).  

CNN based applications are performed using templates. 
Template design is one of the main problems in CNN based 
image processing application. In this study, we have trained 
necessary template for object counting using Iterative Annealing 
optimization method.  

This paper is organized as follows. In section 2, the CNN 
architecture, ACE16k chip and Bi-i Cellular Vision System are 
examined. Section 3 explains template design tool. In section 4, 
object counting algorithm is given. Finally, the concluding 
remarks are given in Section 5. 

 
2. CNN Architecture and Bi-i Cellular Vision System 

 
2.1. CNN structure 

 
The key feature of a Cellular Neural Networks (CNN), 

introduced in [1] [2], is that it is a locally interconnected analog 
processor array. Since CNN has two dimensional (2D) grid 

structure, it is a suitable platform for developing image 
processing algorithms. 

Based on the mathematical modeling of CNNs, a 
programmable CNN, called CNN universal machine (CNN-UM) 
[3] has been developed. The CNN-UM is programmable array 
computer with real time and super computer power in a single 
chip. Since these chips have huge computational power and 
capability of parallel processing, it is possible to perform image 
processing tasks in a high speed in comparison to conventional 
architectures.  The latest hardware implementation of the CNN 
is Analog Focal Plane processor called ACE16k [4]. 

Program instructions called templates have most important 
role in the CNN applications. The dynamical behavior of a CNN 
is completely determined by the templates. The design of 
suitable templates is one of the fundamental tasks in CNN area. 
It is also important to find optimal values for template elements 
so that a CNN performs a desired task.  

Standard CNN consists of MxN rectangular array of cells. 
The smallest part of CNN is called cell (C(i,j)) with Cartesian 
coordinates (i,j)  (i=1,2,3...M,  j=1,2,3...N). Each cell can be 
defined by the following linear and non-linear mathematical 
equations [9]; 
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 where, 
Rxij ∈ ; State variable of cell C(i,j),  

Rykl ∈ ; Outputs of cells,  
 Rukl ∈ ; Inputs of cells, 
 Rzij ∈ ; Threshold,                            
A(i, j ; k, l) ; Feedback operator, 
B(i, j ; k, l) ; Control operator. 

ijy ; Output of cell C(i,j). 

 The sphere of influence, ),( jiSr , of the radius r of cell 
C(i,j) is defined to be set of all neighborhood cells satisfying the 
property  
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 The total number of the template parameters in a CNN is 19 
when r=1 (a threshold parameter ijz , 9 parameters kla , 9 
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parameters klb ). The general structure of the CNN templates is 
as follows  
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2.2. ACE16k Chip 
 

ACE16k is a CNN-UM implementation. CNN-UM is an 
analog and logic computer that consists of many interconnected 
parallel processor units on its main processor. ACE16K can be 
basically described as an array of 128x128 identical, locally 
interacting, analog processing units designed for high speed 
image processing tasks. The system contains a set of on-chip 
peripheral circuitries that, on one hand, allow a completely 
digital interface with the host, and on the other provide high 
algorithmic capability by means of conventional programming 
memories where the algorithms are stored [4]. 

Although ACE16K is essentially an analog processor 
(computation is carried out in the analog domain), it can be 
operated in a fully digital environment. For this purpose, the 
prototype incorporates a bank of Digital-to-Analog (for input) 
and Analog-to-Digital (for output) converters at the images I/O 
port [4]. 

ACE16K is conceived to be used in two alternative ways. 
First, in applications where the images to be processed are 
directly acquired by the optical input module of the chip, and 
second, as a conventional image co-processor working in 
parallel with a digital hosting system that provides and receives 
the images in electrical form [4]. 

 
2.3. Bi-i Cellular Vision System 
 

The Bi-i cellular vision system which contains ACE16k 
chip and Digital Signal Processor (DSP) is a high-speed, 
compact and intelligent camera for training. Most important 
interface of Bi-i is 100 Mbit Ethernet. Programs to be run on Bi-
i are loaded over Ethernet, and the host computer can write or 
read data to or from the Bi-i over Ethernet. Instant Vision 
Libraries and Bi-i SDK (Software Development Kit) are set of 
C++ programming library for developing Bi-i applications. 
These libraries can be used with the development environment 
for the DSP and ACE16k called Code Composer Studio.  
Functions in the SDK are operations on different components of 
the Bi-i hardware such as operating the CMOS sensor. 
TACE_IPL library is an image processing library for ACE16k 
chip [5] [10]. 

 
3. Template Design Tool  

 
In this section, we briefly explain the template design tool. 

We have developed on chip training system using Iterative 
Annealing method on procedure shown by the block diagram in 
Fig.1. Nort-West corner detection template which is used in the 
object counting algorithm has been trained by this tool. 
Information about IA method and on chip training procedure are 
given below.  Details of the template design tool can be 
examined by [12].  

 
 
 

 

3.1. Iterative Annealing 
 

Iterative Annealing (IA), a kind of Simulated Annealing 
[6], is an optimization method specially developed for CNN [7]. 
The algorithm of Iterative Annealing is shown below: 

 
1. Choose initial values   
    0,,,,, 0maxmax0 =jTjsxk τ   

2. Calculate step size maxmax /)/( sj
oTτν =  

3. 0TT =  , 0=i  

4. Tuxy kk
i

k
i .+=   ( ku  : Unit distribution U[-0.5, 0.5] ) 

5. If )()( ii xfyf
��

<  then ii yx
��

=+1  
6. Reduce temperature TT .ν=   
7. 1+= ii  
8. If )/( maxmax jsi <  then Go To 4 
9. 1+= jj     
10. If )( maxjj < Then Go To 3 
 
The function )(xf

�
represents the error measure which must be 

minimized and x
�

represents the D-dimensional parameter 
vector. maxs  is the maximum number of iteration steps and 

maxj determines how many reruns, have to be carried out. 
Having the physical effect of Annealing in mind, we call 0T  the 
start temperature. The minimal temperature τ determines the 
accuracy of the parameter vector at the global minimum. At 
every step the temperature is chilling, leading to a decreasing 
search area until T reaches τ . Then the process restarts with      
T =T0. Finally a global minimum is found [7]. 
 
3.2. On Chip Training with Iterative Annealing 

 
Iterative Annealing (IA) method was modified to work on 

a PC with the ACE16k chip. This means that we can obtain 
templates which are stable and robust without inaccuracies of 
CNNUM hardware realization. ACE16k chip as an external 
process unit obtains output images for variable template 
configurations during training process. IA algorithm consists of 
two loops. The inner loop contains annealing procedure. The 
outer loop controls iterative behavior. The function to minimize 
is an error measure calculated between a given reference image 
R and an output image O obtained from the chip [8]. This 
function is 
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Here a and b are the image dimensions, jir , and jio ,  the pixel 
grey values. g is a factor for normalization to obtain values 
between 0 and 1. 

We can modify the Iterative Annealing algorithm to adapt 
to the chip by adding the following steps into the inner loop:                 
1. Templates are generated dynamically out of the parameter 
vector to load and perform them directly on the chip. 2. The chip 
output image saved for computing the distance to a reference 
image. This algorithm generates templates using parameter sets. 
Then, it loads and runs these templates to ACE16k chip, saves 
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output images and compares them with desired output using 
error measure function [8]. 

 
4. Object Counting Algorithm on Bi-i System 

 
In this section we describe the algorithm for object 

counting on Bi-i System based on work of Fasih et al [9]. We 
have developed and adapted the algorithm to ACE16k chip. This 
algorithm can count objects rapidly  in a grey level image 
because of high-speed offered by Bi-i System. Block diagram of 
the algorithm is shown in Fig.1. In this algorithm, we use the 
north-west corners to count the number of the objects. Aim of 
the first three steps is to prepare the image to detect the corners. 
The algorithm accepts 128x128 pixels grey level images 
(Fig.2a.). 
 

 
 

Fig.1. Block Diagram of Object Counting Algorithm on Bi-i 
System 

 

  
 

                          a)          b) 
  

Fig.2.  a) Input Image    b) Threshold Result  
 

In the first step of the algorithm, input image is converted 
to binary image by the threshold operator called 
ConvLAMtoLLM. This function in SDK Library, converts a grey 
image in a LAM memory to a binary image in a LLM memory 
on ACE16k. Pixels above the threshold, are converted to ON, 
others are converted to OFF [5]. Output image is given in 
Fig.2b.  

 

          
         a)          b) 

 
Fig.3. a) Opening Result    b) Convex-Hull Result  

 
In next step of the algorithm, small objects on binary 

image are eliminated by Opening4 function in SDK Library. 
These objects are the remains of thresholding operation which 
also can be called as a noise. In addition, this function Opening4 
function performs 4-connectivity binary opening using dilation 
and erosion functions [5]. Noiseless image is given in Fig.3a.  

In the following step, objects on noiseless image obtained 
in previous step are converted to rectangular objects to find 
North-West corners easily of each object. This operation is 
perfomed by ConvexHull in SDK Library. This function 
thickens concave objects to convex ones. The result depends on 
the type of parameter. Using parameter of 
CONVEX_90_DISCON, the objects on the image are involved 
into a square [5]. Result of this function is shown in Fig.3b.  

After ConvexHull operation, North-West corner detection 
template is applied on image in order to represent each 
rectangular object as a corner. We trained this template with the 
template design tool that we have developed. Training procedure 
was explained in Section 3.2. In order to detect corners, an input 
image (Fig.2b.) and trained N-W corner template are sent to 
ACE16k chip. Output of ACE16k chip gives corners to us. N-W 
template and corresponding output image of this template are 
shown below. 
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Fig.4. N-W Corner Template Result 
 

Last step of the algorithm is counting white pixels on the 
image shown in Fig.4. This operation is performed using loop 
operation (for function) in C++ programming language.  
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3.1. Analysis of Execution time   
 

We have performed the algorithm on different platforms 
such as ACE16k and DSP in Bi-i and Matlab in order to show 
the computational power of ACE16k. We have used a PC 
(Core2Duo 2.0GHz, 2GB RAM). First three steps of the 
algorithm are implemented on all platforms. Duration of 
threshold operation is almost same on these three platforms. The 
shortest execution times of Opening and Convex-Hull 
operations belong to ACE16k. Template execution step can not 
be realized on DSP. In addition, template execution time 
obtained using MATCNN (A toolbox for CNN implementations 
on Matlab) [14] was given as reference; because N-W corner 
template does not work on Matlab. This template was trained to 
work on ACE16k.      

When total execution time of ACE16k is compared with 
Matlab’s time, computational power of ACE16k chip appears 
clearly. ACE16k is faster about 60 times than Matlab.  

 
Table 1. Execution times of counting algorithms on different 

platforms 
 

 ACE16k DSP Matlab 
Threshold 641 μs 841 μs 670 μs 
Opening 425 μs 1673 μs 36000 μs 

Convex-Hull 1362 μs 96154 μs 9200 μs 
N-W Corner 423 μs - 390000 μs 

Counting 4169 μs 4169 μs 760 μs 
Total 7020 μs = 

0.007020 s 
102837 μs = 

0.102 s 
436630 μs = 

0.436 s 
 

5. Conclusions 
 

We have implemented an object counting algorithm on   
Bi-i Cellular Vision System and showed how to work on a 
sample image. We have calculated execution times of this 
algorithm on ACE16k, DSP and Matlab. Obtained results have 
shown that the algorithm can rapidly and truly count objects on 
a given image. However obtained execution times points to high 
performance of ACE16k chip and shows that Bi-i Cellular 
Vision System is fast and therefore, easily applicable to image 
processing algorithms in real time. 
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