
Implementation of a CNN based Object Counting Algorithm on Bi-i Cellular
Vision System

Selcuk SEVGEN1, Fethullah KARABIBER2, Eylem YUCEL3 and Sabri ARIK4

1,2,3,4Istanbul University, Department of Computer Engineering, Turkey

sevgens@istanbul.edu.tr, fetullah@istanbul.edu.tr, eylem@istanbul.edu.tr, ariks@istanbul.edu.tr

Abstract

Object counting has been used in many areas such as
medical and industrial applications. It is a challenging
problem to count the target objects in high speed. It is useful
to implement image processing applications using the high
capability computational power offered by Cellular Neural
Network type analog processor named as ACE16k. In this
paper, we implement an efficient object counting algorithm
working on ACE16k chip. Our results have proved that the
proposed algorithm can count objects on a given image
rapidly and accurately.

1. Introduction

Counting objects in images is necessary in various
applications, such as counting people on roads or birds in the
sky, packaging, and quality control in industrial systems, etc.
Object counting is a simple task with human efforts. But it is
necessary to develop automated methods for object counting
using computer vision to reduce human efforts.

In generally, the studies related to task of object counting
are based on detection of target objects. Objects on an image are
labeled and indexed by a finding algorithm. This process is very
time consuming [13]. Using an algorithm based on Cellular
Neural Networks (CNNs) for counting objects reduces time
consuming. In previous works, Seiler [11] and Fasih et al. [9]
developed different object counting methods using CNN. These
works are based on software simulations. Our proposed
algorithm works on Bi-i Cellular Vision System which has two
type microprocessors - Ace16k and Digital Signal Processor
(DSP).

CNN based applications are performed using templates.
Template design is one of the main problems in CNN based
image processing application. In this study, we have trained
necessary template for object counting using Iterative Annealing
optimization method.

This paper is organized as follows. In section 2, the CNN
architecture, ACE16k chip and Bi-i Cellular Vision System are
examined. Section 3 explains template design tool. In section 4,
object counting algorithm is given. Finally, the concluding
remarks are given in Section 5.

2. CNN Architecture and Bi-i Cellular Vision System

2.1. CNN structure

The key feature of a Cellular Neural Networks (CNN),

introduced in [1] [2], is that it is a locally interconnected analog
processor array. Since CNN has two dimensional (2D) grid

structure, it is a suitable platform for developing image
processing algorithms.

Based on the mathematical modeling of CNNs, a
programmable CNN, called CNN universal machine (CNN-UM)
[3] has been developed. The CNN-UM is programmable array
computer with real time and super computer power in a single
chip. Since these chips have huge computational power and
capability of parallel processing, it is possible to perform image
processing tasks in a high speed in comparison to conventional
architectures. The latest hardware implementation of the CNN
is Analog Focal Plane processor called ACE16k [4].

Program instructions called templates have most important
role in the CNN applications. The dynamical behavior of a CNN
is completely determined by the templates. The design of
suitable templates is one of the fundamental tasks in CNN area.
It is also important to find optimal values for template elements
so that a CNN performs a desired task.

Standard CNN consists of MxN rectangular array of cells.
The smallest part of CNN is called cell (C(i,j)) with Cartesian
coordinates (i,j) (i=1,2,3...M, j=1,2,3...N). Each cell can be
defined by the following linear and non-linear mathematical
equations [9];

 �
∈

+−=
),(),(

),;,(
jiSlkC

klij
ij

r

ylkjiAx
dt

dx

 �
∈

++
),(),(

),;,(
jiSlkC

ijkl

r

zulkjiB (1)

1

2
11

2
1)(−−+== ijijijij xxxfy

 where,
Rxij ∈ ; State variable of cell C(i,j),

Rykl ∈ ; Outputs of cells,
 Rukl ∈ ; Inputs of cells,
 Rzij ∈ ; Threshold,
A(i, j ; k, l) ; Feedback operator,
B(i, j ; k, l) ; Control operator.

ijy ; Output of cell C(i,j).

 The sphere of influence,),(jiSr , of the radius r of cell
C(i,j) is defined to be set of all neighborhood cells satisfying the
property

{ }
��

�
�
�

��

�
�
	

≤−−=
≤≤≤≤

rjliklkCjiS
NlMk

r |||,|max),(),(
1,1

 (2)

 The total number of the template parameters in a CNN is 19
when r=1 (a threshold parameter ijz , 9 parameters kla , 9

II-394

parameters klb). The general structure of the CNN templates is
as follows

 Zand B ,

333231

232221

131211

333231

232221

131211

�

�

�

�
=

�

�

�

�
=

bbb
bbb
bbb

aaa
aaa
aaa

A (3)

2.2. ACE16k Chip

ACE16k is a CNN-UM implementation. CNN-UM is an
analog and logic computer that consists of many interconnected
parallel processor units on its main processor. ACE16K can be
basically described as an array of 128x128 identical, locally
interacting, analog processing units designed for high speed
image processing tasks. The system contains a set of on-chip
peripheral circuitries that, on one hand, allow a completely
digital interface with the host, and on the other provide high
algorithmic capability by means of conventional programming
memories where the algorithms are stored [4].

Although ACE16K is essentially an analog processor
(computation is carried out in the analog domain), it can be
operated in a fully digital environment. For this purpose, the
prototype incorporates a bank of Digital-to-Analog (for input)
and Analog-to-Digital (for output) converters at the images I/O
port [4].

ACE16K is conceived to be used in two alternative ways.
First, in applications where the images to be processed are
directly acquired by the optical input module of the chip, and
second, as a conventional image co-processor working in
parallel with a digital hosting system that provides and receives
the images in electrical form [4].

2.3. Bi-i Cellular Vision System

The Bi-i cellular vision system which contains ACE16k
chip and Digital Signal Processor (DSP) is a high-speed,
compact and intelligent camera for training. Most important
interface of Bi-i is 100 Mbit Ethernet. Programs to be run on Bi-
i are loaded over Ethernet, and the host computer can write or
read data to or from the Bi-i over Ethernet. Instant Vision
Libraries and Bi-i SDK (Software Development Kit) are set of
C++ programming library for developing Bi-i applications.
These libraries can be used with the development environment
for the DSP and ACE16k called Code Composer Studio.
Functions in the SDK are operations on different components of
the Bi-i hardware such as operating the CMOS sensor.
TACE_IPL library is an image processing library for ACE16k
chip [5] [10].

3. Template Design Tool

In this section, we briefly explain the template design tool.

We have developed on chip training system using Iterative
Annealing method on procedure shown by the block diagram in
Fig.1. Nort-West corner detection template which is used in the
object counting algorithm has been trained by this tool.
Information about IA method and on chip training procedure are
given below. Details of the template design tool can be
examined by [12].

3.1. Iterative Annealing

Iterative Annealing (IA), a kind of Simulated Annealing
[6], is an optimization method specially developed for CNN [7].
The algorithm of Iterative Annealing is shown below:

1. Choose initial values
 0,,,,, 0maxmax0 =jTjsxk τ

2. Calculate step size maxmax /)/(sj
oTτν =

3. 0TT = , 0=i

4. Tuxy kk
i

k
i .+= (ku : Unit distribution U[-0.5, 0.5])

5. If)()(ii xfyf
��

< then ii yx
��

=+1
6. Reduce temperature TT .ν=
7. 1+= ii
8. If)/(maxmax jsi < then Go To 4
9. 1+= jj
10. If)(maxjj < Then Go To 3

The function)(xf

�
represents the error measure which must be

minimized and x
�

represents the D-dimensional parameter
vector. maxs is the maximum number of iteration steps and

maxj determines how many reruns, have to be carried out.
Having the physical effect of Annealing in mind, we call 0T the
start temperature. The minimal temperature τ determines the
accuracy of the parameter vector at the global minimum. At
every step the temperature is chilling, leading to a decreasing
search area until T reaches τ . Then the process restarts with
T =T0. Finally a global minimum is found [7].

3.2. On Chip Training with Iterative Annealing

Iterative Annealing (IA) method was modified to work on

a PC with the ACE16k chip. This means that we can obtain
templates which are stable and robust without inaccuracies of
CNNUM hardware realization. ACE16k chip as an external
process unit obtains output images for variable template
configurations during training process. IA algorithm consists of
two loops. The inner loop contains annealing procedure. The
outer loop controls iterative behavior. The function to minimize
is an error measure calculated between a given reference image
R and an output image O obtained from the chip [8]. This
function is

bag

or

ORf

b

j
jiji

a

i

**
),(1

,,
1
��

==

−

= (4)

Here a and b are the image dimensions, jir , and jio , the pixel
grey values. g is a factor for normalization to obtain values
between 0 and 1.

We can modify the Iterative Annealing algorithm to adapt
to the chip by adding the following steps into the inner loop:
1. Templates are generated dynamically out of the parameter
vector to load and perform them directly on the chip. 2. The chip
output image saved for computing the distance to a reference
image. This algorithm generates templates using parameter sets.
Then, it loads and runs these templates to ACE16k chip, saves

II-395

output images and compares them with desired output using
error measure function [8].

4. Object Counting Algorithm on Bi-i System

In this section we describe the algorithm for object

counting on Bi-i System based on work of Fasih et al [9]. We
have developed and adapted the algorithm to ACE16k chip. This
algorithm can count objects rapidly in a grey level image
because of high-speed offered by Bi-i System. Block diagram of
the algorithm is shown in Fig.1. In this algorithm, we use the
north-west corners to count the number of the objects. Aim of
the first three steps is to prepare the image to detect the corners.
The algorithm accepts 128x128 pixels grey level images
(Fig.2a.).

Fig.1. Block Diagram of Object Counting Algorithm on Bi-i
System

 a) b)

Fig.2. a) Input Image b) Threshold Result

In the first step of the algorithm, input image is converted
to binary image by the threshold operator called
ConvLAMtoLLM. This function in SDK Library, converts a grey
image in a LAM memory to a binary image in a LLM memory
on ACE16k. Pixels above the threshold, are converted to ON,
others are converted to OFF [5]. Output image is given in
Fig.2b.

 a) b)

Fig.3. a) Opening Result b) Convex-Hull Result

In next step of the algorithm, small objects on binary

image are eliminated by Opening4 function in SDK Library.
These objects are the remains of thresholding operation which
also can be called as a noise. In addition, this function Opening4
function performs 4-connectivity binary opening using dilation
and erosion functions [5]. Noiseless image is given in Fig.3a.

In the following step, objects on noiseless image obtained
in previous step are converted to rectangular objects to find
North-West corners easily of each object. This operation is
perfomed by ConvexHull in SDK Library. This function
thickens concave objects to convex ones. The result depends on
the type of parameter. Using parameter of
CONVEX_90_DISCON, the objects on the image are involved
into a square [5]. Result of this function is shown in Fig.3b.

After ConvexHull operation, North-West corner detection
template is applied on image in order to represent each
rectangular object as a corner. We trained this template with the
template design tool that we have developed. Training procedure
was explained in Section 3.2. In order to detect corners, an input
image (Fig.2b.) and trained N-W corner template are sent to
ACE16k chip. Output of ACE16k chip gives corners to us. N-W
template and corresponding output image of this template are
shown below.

5.49
2.30.12-0.49-
0.19-3.511.87-

1.632.93-3

000
04.760
000

===

�

�

�

�

�

�

�

�
ZBA (4)

Fig.4. N-W Corner Template Result

Last step of the algorithm is counting white pixels on the
image shown in Fig.4. This operation is performed using loop
operation (for function) in C++ programming language.

II-396

3.1. Analysis of Execution time

We have performed the algorithm on different platforms
such as ACE16k and DSP in Bi-i and Matlab in order to show
the computational power of ACE16k. We have used a PC
(Core2Duo 2.0GHz, 2GB RAM). First three steps of the
algorithm are implemented on all platforms. Duration of
threshold operation is almost same on these three platforms. The
shortest execution times of Opening and Convex-Hull
operations belong to ACE16k. Template execution step can not
be realized on DSP. In addition, template execution time
obtained using MATCNN (A toolbox for CNN implementations
on Matlab) [14] was given as reference; because N-W corner
template does not work on Matlab. This template was trained to
work on ACE16k.

When total execution time of ACE16k is compared with
Matlab’s time, computational power of ACE16k chip appears
clearly. ACE16k is faster about 60 times than Matlab.

Table 1. Execution times of counting algorithms on different

platforms

 ACE16k DSP Matlab
Threshold 641 μs 841 μs 670 μs
Opening 425 μs 1673 μs 36000 μs

Convex-Hull 1362 μs 96154 μs 9200 μs
N-W Corner 423 μs - 390000 μs

Counting 4169 μs 4169 μs 760 μs
Total 7020 μs =

0.007020 s
102837 μs =

0.102 s
436630 μs =

0.436 s

5. Conclusions

We have implemented an object counting algorithm on
Bi-i Cellular Vision System and showed how to work on a
sample image. We have calculated execution times of this
algorithm on ACE16k, DSP and Matlab. Obtained results have
shown that the algorithm can rapidly and truly count objects on
a given image. However obtained execution times points to high
performance of ACE16k chip and shows that Bi-i Cellular
Vision System is fast and therefore, easily applicable to image
processing algorithms in real time.

6. References

[1] L. O. Chua and L. Yang, “Cellular neural networks:
Theory”, IEEE Trans. Circuits Syst., 35, pp.1257–1272, 1988.
[2] L. O. Chua and L. Yang, “Cellular neural networks
:Applications”, IEEE Trans. Circuits Syst., 35, pp.1273–1290,
1988.
[3] T. Roska and L. O. Chua, “The CNN Universal Machine: An
Analogic Array Computer”, IEEE Transactions on Circuits and
Systems- II: Analog and Digital Signal Processing, Vol. 40, pp.
163–173, 1993.
[4] G. Liñàn, R. Domìguez-Castro, S. Espejo, and A. Rodrìguez-
Vàzquez, “ACE16k: A programmable focal plane vision
processor with 128_128 resolution”, Eur. Conf. Circuit Theory
and Design, vol. 1, Espoo, Finland, pp. 345-348, 28–31 Aug.
2001.
[5] Bi-i Vision System : User Manual.
[6] S. Kirkpatrick, C.D. Gelatt, Jr. and M.P. Vecchi,
“Optimization by Simulated Annealing”, Science, vol. 220, no.
4598, pp.671-679, 1983.

[7] D. Feiden, R. Tetzlaff, “Iterative annealing a new efficient
optimization method for cellular neural networks”, in ICIP
2001, Thessaloniki, Greece, 2001, pp. 549-552.
[8] D. Feiden, R. Tetzlaff, “On-Chip Training for Cellular
Neural Networks using Iterative Annealing”, in
Microtechnologies for the New Millenium 2003, Gran Canaria,
Spain, 2003, pp.470-477.
[9] A. Fasih, J. Chedjou and K. Kyamakya, “Ultra Fast Object
Counting Based-on Cellular Neural Network”, First
International Workshop on Nonlinear Dynamcis and
Synchronization (INDS´08), pp. 181-183, 2008.
[10] A. Zarandy and C. Rekeczky, “Bi-i: a standalone ultra high
speed cellular vision system.”, IEEE Circuit and Systems
Magazine, pp. 36-45, 2005.
[11] G. Seiler, “Small Object Counting with Cellular Neural
Networks”, Cellular Neural Networks ant Their Applications,
CNNA-90, pp.114-123, 1990.
[12] S. Sevgen, F. Karabiber, S. Arik, “Implementation of On-
Chip Training System for Cellular Neural Networks Using
Iterative Annealing Optimization Method”, International
Symposium on INnovations in Intelligent SysTems and
Applications INISTA’09, 2009 (accepted).
[13] T. Kobayashi, T. Hosaka, S. Mimura, T. Hayashi and N.
Otsu, “HLAC Approach to Automatic Object Counting”, Bio-
inspired Learning and Intelligent Systems for Security BLISS
'08, pp.40-45, 2008.
[14] www.mathworks.com

II-397

