A KALMAN FILTER ALGORITHM FOR GENERALIZED MOVING
WINDOWING

Ugur Sevgen
Tubitak Marmara Research Center
Gebze, Kocaeli, Turkey
e-mail: Ugur.Sevgen@posta.mam.gov.tr

Kema M. Fidanboylu
Fatih University, Department of Electronics Eng.
Buyukcekmece, Istanbul, Turkey
e-mail: kfidan@fatih.edu.tr

Key words: Kalman Filters, Estimation, Moving Averages

ABSTRACT

Several Kalman filtering algorithms have been
implemented in the past years. One of these algorithms
uses the moving windowing (MW) approach, which is
limited with the use of rectangular windows. In this paper,
a generalized moving windowing (GMW) algorithm that
utilizes arbitrary shaped windows is proposed. The
proposed algorithm has been implemented on a known
process and compar ed with existing algorithms. As a result
of this comparison, it is shown that GMW algorithm has a
superior performance.

I.INTRODUCTION

Kaman filtering is a relatively recent (1958) devel opment
in filtering. Theoreticaly, its purpose is to estimate the
state of a linear dynamic system perturbed by Gaussian
white noise. The estimator obtained as a result of Kalman
filtering is statistically optima with respect to any
quadratic function of estimation error. Kalman filtering has
been applied in several areas such as aerospace, marine
navigation, nuclear power plant instrumentation,
demographic modeling, manufacturing, etc. [1-3]. Two
commonly used estimation algorithms are: moving
window (MW) Kaman filtering and least squares mean
(LSM) estimation. The moving windowing (MW)
approach is limited with the use of rectangular windows.
In this paper, we propose a generalized moving
windowing (GM W) algorithm that utilizes arbitrary shaped
windows.

This paper is organized as follows. Section |l presents the
mathematical development. In section Ill, problem
formulation and preliminary definitions are presented.
Section 1V presents the generalized noving windowing
Kaman filtering algorithm. In section V, adjustment of the
generalized moving window length is discussed. In
section VI, the proposed algorithm is compared with MW
and LSM algorithms through an application.

II.MATHEMATICAL DEVELOPMENT
Consider a discrete linear system model with a linear
observation equation

x(k+1) =f (k+1K)X(K) + Gk +)w(K) ®

z(k) = H (k) x(k) +v(k) @
where x(K) is an nx1 dimensional state vector, z(k) is an
mx1 dimensional observation vector, w(k) and v(k) are
zero-mean white noise vectors whose dimensions are mx1
and rx1, respectively, f(k+1,k) is nxn dimensional state
transition matrix, H(k) is rxm dimensional output matrix,
G(k+1) is nxmdimensional probability distribution matrix.
The covariance matrices of w(k) and v(k) will be
represented by Q(k) and R(k), respectively, where, Q(k)
is an mxm dimensional positive semi-definite matrix and
R(k) isan rxr dimensional positive definite matrix.

The initial value of x(k), x(0) is a random variable with
mean equal to X(0) and variance P(0). We will assume

that w(k), v(k) and x(0) are uncorrelated with each other.
The innovation set will be represented by

Z(k+ 1) ={Z(D),..., Z(k),Z(k + 1} , where K is the set of

non-negative integers. The optimal estimate of z(k+1)
given the innovation set {Z(1),..., Z(k),Z(k + 1)} can be

defined to be as follows:

2(k +1|K) = E{z(k +1) | Z(K)} 3
Theestimation error, Z(k +1| k) can be defined as
Z(k+1|k)=z(k+1)- Z(k+1]|k) 4

The expression given in Equation (4) is the difference
between the actual and the predicted measurement at

k+1. Using this expression, the prediction error
covariance matrix P(k+ 1|k) can be obtained as follows:

P(k+1|k):E{>~<(k+1|k)>?T(k+1|k)} (5)
Theorems:



1) Let x and z be jointly distributed, Gaussian random
vectors. Then, the conditional distribution of x givenyis
normal with mean,
-1
and the corresponding estimate can be defined as
X=E{x| Z
2) The Covariance of the estimation error is given by
E{[x - E{x| z}][x - E{x]| z}]T}
1 ©)
=Py - nyPy ny
In the above expression, the random variableszand  [x-
E{x|Z}] are independent.
3) Let, x, u and v be jointly Gaussian random vectors.
Then, the random vectors u and v are independent and
the relation between the three random vectors is given by
the following equation:
E{x |u,v} = E{x | v}+EXx|u}-Ex 8
The proofs of the above theorems can be found in[3].

Next, let us define X(k +1|Kk), to be the error between
the state x(k+ 1) and itsestimate X(k +1| k),

X(k+1]k) =x(k+1) - X(k+1]| k) 9
The estimate X(k+1|k) can bewritten as

K(k+1]k)= E{x(k+1) [Z(k)}, k30 (10
It can be shown that, X and X satisfy the orthogonality
principle, i.e.

E{x(k +1| K)R(k+1|K)} = 0 (1)

I11.PROBLEM FORMULATION AND PREL IMINARY
DEFINITIONS
Before defining the Generalized Moving Window (GMW)
Kaman filtering algorithm, let us define the parameters
that will be used in this process:

fandf  : nxn State Transition Matrix

Gand G* : nxmProbability Distribution Matrix

X : nx1 Windowed Estimation V ector

X : nx1 Filtering Error Vector

6] : nx1 Estimation Vector Without Windowing
g : nx1 State Vector Without Windowing

X : nxn Windowing Matrix

The simplest form of a windowing model is shown in
Figure 1.

(k) " X0

Figure 1. Windowing model.

Hence, the equation for the discrete linear windowing
model can be written as follows:

x(K)D x(k) »q (k) 12
Using the above equation, x(k+ 1) can be written as
x(k+1) =x(k+1)>q(k+1) 13)

Substituting Equation (12) into Equation (2), we obtain the
following observation model

z(k) = H (k)x (k)q (k) +v(k) (14
Next, let us obtain the formulation for Kaman filtering
Algorithm using Moving Windowing approach according
to Equations (1-14). We can write the observation
estimate according to Equations (1-3) asfollows:

2(k +11K) = E{[H (k +1) xx(k + 1) + v(k +1)]Z(k)}

= E{H(k +1) xx(k + 1) | Z(K)}

+E{v(k +1) | Z(K)}

= H(k+1) xE{x(k + 1) | Z(K)}

= H(k+1) xE{x(k +1)>q(k +1) | Z(K)}

= H (k +1) s (k +1) xE{q(k +1) | Z(K)}

=H(k+1) x(k+1)>q(k+1|k) (15)
In the above Equation, ci (k + 1) denotes the estimate of
the original system model. It Ehould also be noted that in
this equation, E{v(k+1)|Z(k)} is identicaly zero.

Using the result obtained in Equation (15), we can now
derive the innovation expression, Z(k +1):

F(k+D) = 2Kk +1) - 2k +1] K)
=H(k+Dx(k+D gk +D+v(k+1)
- H(k+12) 5 (k +2) 1 (k +1] K)
= H(k+D sk +Dak + - Gk +1] K)
+v(k+1)
= H(k+D) % (k +2) % (k+1| k) +v(k +1)

In the above formulation, g and x have the same statistical
properties. Let us now derive the new expression for error:

q(k+1]k) =q(k +1) - q(k+1]k) a7
Using the above equations, let us now derive the
expressions that will be used in the algorithm.

] (16

Estimation:
K(k+1] k) = E[x(k +1) | Z(K)}

= E{f (k +1,k) % (k) >q(k) | Z(K)}
+ Gk +1) xE{ W(k) | Z(K)}
=f (k +1,K) % (k) >q (K)

From the above equation, the estimate of the original
system model can be written as follows:



ak+11k) = Hqk+1)| Z()}

= [k(k+D)] " 1of (k +1k) 5 (k) ()
In order to simplify the future derivations, we will use the
following notations:

Hy(k+1) = H(k +1)x (k +1) (20)

19

Fuk+1K) = x(k+D] U (k+Lkx(k) (2

Gy (k+D) = [x(k+ ] P xck +1) )

Next, let us derive the generalized Kaman filtering
algorithm equations by writing down the equations for the
new system and observation model:

a(k+1) =f y(k + 1K) g (K) + Gy(k +D)>wk) (23
z(k+1) = Hy,(k +2)g (k) +v(k) (24)

Using the above equations, the prediction error can be
written asfollows:

X(k+1] k) =x(k+Da(k +1) + Gk +Hwk +1)
- Efx(k+Ja(k +1) | Z(k)}
=x(k+1q(k +1) - x(k +2q(k +1| k)
+ Gk +)wk +1) (25)
=x(k+Dfak+ D - Gk +1] k)]
+ Gk +wk +1)
=x(k +1)q (k + 1] k) + Gk + Dw(k +1)
In order to obtain the formulation for the Generalized
Moving Window (GMW) Kaman filtering algorithm, let
us first apply the moving windowing algorithm to the
above equations. Let s(k) denote the length of the

moving window. Then, applying Theorem 3 to the
sequences { Z(k - s(k)),...,Z(k)} and z(k+ 1), we obtain,

Eak+D|Z(k - s(k), Z(k - (k) +D),...Z(k + 1)}

=Ha(k+D[Z(k- s(k),.... Z(K)}
+Eqk+1)[Z(k+D} - Eq(k+1}

=Ea(k+D|Z(k- s(k)} (26)
+Eqk+1) | Z(k - sk) +1),..., Z(k + 1}

- Ea(k +1)}
The above equation will be used to derive the GMW
Kaman filtering agorithm. Let us write the known
parameters into Equation (26) and arrange the terms to
obtain the unknown parameters. Hence, we obtain

a(k+D= B+ | Zk- ) +1),.., Zk+D}
=Bak+D | Zk- s(K).... ZK)}
+Ha(k+ | Z(k+1}- Eak+D | Z(k- <Kk)}
=q(k+1]K)- Elgk+] | Z(k- K}
+Ha(k+ | Z(k+1} (1

AppIAyi ng Theorem 1 to Equation (27), we obtain
gk+1|k)=E{q(k +1) | Z(k - s(k)),...,Z(k)}
= Eff w(k +1k)q (k) | Z(k}
+E{Gy(k+Dw(k) | Z(K)}  (28)
=fw(k +LRE{a(k) | Z(k)}
=f W(k +1,k)q (k)
Applying Theorem 2 and the property E{Z(k)} =0 to
the third term in Equation (27), we obtain
Ea(k +D1 2k + D} = Ea(k+ D} + RsP5 12k +1) (29)

Simplifying and rewriting the second terms in Equation
(29), we obtain

25 = Ela(k +1ZT (k+1}

= E{q(k +D[Hy(k + DG (k+ 1]K) + v(k +D] T}
=Efq(k+1q | (k+1/K}H b (K+1) (30)
SE[Q K +1]K)Qq | (K +1]K)}H Kk +1)

=P, (k +1KH k+1)

R = E{Z(k +1)ZT k +1)}
@)
= Hy (K + DR, (K+1] K Hy (k+ 1) + Rk +1)

In Equati on (30), we have used the orthogonality relation
betweenq(k +1|k) and g (k +1|K).

Now, letting K(k+1)=PR, xP, 1 and substituting
Equation (30) and (31) into Equation (29), we obtain,

Ea(k +1)| Z(k + 1)}
= Efak +1} + P, (k + 1K) H (K + D)

" [Hu(k + DR, (k F1[K)H (k +1) + Rk +1)] "1
© Z(k+D) (32)
=E{gk+1D}+K(k+1)Z(K +1)
The term K(k +1)is known as the Kalman gain in
literature. Using Theorem 2 and E{Z(k)}=0, the term
Eq(k +1) | z(k- s(k))} from Equation (27) can be written as

Hak+D | Z(k- s(K)}
_ Lo
= Ba(k+ i+ R P 2k s(K)

The first factor of the second term in Equation (33) can be
written asfollows:

33



Ry, = Hak+1Z (k- )
= B Ffk+ 1R + Gtk +Dn)]
" k- SO K- s [ k- S~ D +v(k- ST}
=f Wk +HLEGA T (k- ) [K- S0 - Dk~ SK)

=fk+1K- SR (k- s(K) [k- (K- J)H\I/(k- sK) @4
In Equation (34), we have again used the orthogonality

principle. We have also used the following solution of the
state equation given in Equation (23),

a(k) =fy(k k- s(k)

(39

+ i:k?s(k)f w (K, i +D)G(I)w(i)

where, k - 13 k- s(k). In Equation (35), the windowed

transition function, f ,(k,k- s(k)) can be defined as
follows:
fwk k- sk)=f k- D--f (k- s(K)- 1 k- k) (36)

The second factor of the second term in Equation (33) can
be written asfollows:

Py = EZ(k- SK)Z' (k- K))
= E[Hy(k - s()I (k- s(k) | k- s(k)- 1)
q " (k- (k- S(K) - DHy(k - s(K))}

+EVK- SOV (K- ()
= Hy (k- SYP(k - sK) [k - k) - 1
*HE K- s) + Rk - s(K)

Substituting the results obtained in Equations (34) and
(37) into our main equation given in (32), we obtain

Eak+D | Z(k - s(k)} = E{a(k+D} +f \y (k+1k - S(k))(38)
" K(k- s(k))<z(k- s(K))

Next, let us write the Kalman gain given by Equation (38)
in more detail

Kik- s(k)) =R, (k- sk) [k - (k)- DHyp(k- SK)
“[Hw(k- sk)R (k- s(k) [k- sk) -1 (39)
" Hyy(k- (k) +Rek- s()] 2k~ s(k)

Substituting Equations (23), (32) and (38) into Equation
(27) and simplifying, we obtain

Ak +D =Fy(k +1 kA(K) +K (k+DZ(k+D)- f yy(k+Lk - SK))

" K(k- s(k)Z(k - s(k)) (40)
Using Equation (28), we obtain

q(k+1/k) =q(k+)- q(k+1/ k)

=f Wk +1 K (K) + Gy (K+DWK) - f yy(k+1 K3 (K)

=f Wk +1K)(K) +Gyk +DW(K) - f yy(k +1K)
I ko k- Datk- D- gk k- s(K) - DZ(k- s(k)- D)
+K(KZ(K)]

= (K +1K) % (K) + Gy (k +2) ww(K) - f  (K+LK) (k| K - 1)
+K(K)Z(K) - f yy(k+L k- s(K) - 1)>Z(k- s(K) - 1)

=f Wk +11) 7 (K| K- ) +Gyy(k +1)(K) +K(K) Z(K)
- fwk+1K- s(k)- DZ(k- s(k)- ) (41

We can now derive the covariance matrix Fa (k+1]k) to

be asfollows:
R (k+1]K) = E{q(K+1[K)q | (k+1[K)}

= w(k+ LR)R (k| k- 1) 1 (k + 1K)

+ Gy (k + QG (k+1)
- F(k+ LK (KH y (R (k [k - Df Nk +1,K)

(42)

-fW(k+1,k)Pq(k|k-1)H\-,r\,(k)KT(k)f\Tv(k+1,k)
+(k +1k- s(K) - DRy (k- s(k) - 1]k - (k) - 2)
“Hyy(k - - DK T (k- () - D yy (k+ L k- s(K) - 1
=fw(k+ LR, (K)f o (K + LK) + Gy (k +DQKG, (k +1)
+f ik +1,k- ) - DR, (k- s(k) - 11k - s(k)- 2)
“H(k - ()= DK T (k- s(k) - f gy (k+ L k- s(K) - 1)

In the above simplification, we have utilized the following
relations

E{d (k1 k- D2 (K} = By (KT k= DH, (k)
E(Z() | (kIk- D} = Hy (R (k[ k- D

E{Z(0Z' (0} = Hy( R (K [k- DHyy(K) + RK) (49

The posteriori covariance matrix can now be written as
follows:

Pq (k+1= Pq(k+1| K)- K(k+D)Hy,(k+1)
’ Fa (k+1] k)

43

(44)

(46)

IV.GMW KALMAN FILTERING ALGORITHM
From the above derivations, the parameters of the
proposed GMW Kaman filtering algorithm can be
summarized as follows:

Filtering Algorithm:



qk+1) =fy(k+Lk) (k) + K(k +DZ(k +1)

- (47)
- fw(k+Lk- s(k)K(k- s(k)z(k - s(k))
Gain Equation:
K(k+1) = B (K F11K)H b (k +1) (48)

“[Hy(k+ DRy (k+1| KH o (k +1) + R(k +1)] "1

A Priori Covariance Algorithm:
Ry (1] K) =f y(k+ LRI, (K T K+1K) + Gy (k +DQK)G, (K +1)
+iw(k +1k- sk) - DPq(k' K) - 1| k- s(k) - 2) (49

* Hiy(k- k) - DK (k- s(k)- Dk +Lk- (k) - D
A Posteriori Covariance Algorithm:
P,(k+1) =P, (k+1]k)

q q (50)

- K(k +1)HW(k+:I)Pq (k +1k)
V.ADJUSTMENT OF THE GENERALIZED MOVING
WINDOW LENGTH

Let s(k) denote the length of the generalized window. The
necessary equations for the proposed GMW Kaman
filtering algorithm were summarized in Equations (47)-(50).
In the windowing process, in order to reduce the
undesirable effect of the old data on the new data, we
subtract the same number of old data as the new data.
With this process, the length of the window stays
unchanged. Hence, to accomplish this task let us define
two new functions as follows:

Dk+3 =fyfk+1k- K- IR (k- LK) -1|k- sK)- 9

(51)
“ - 00~ DK' (k- - 2F i k- - 3
Bk+1)=fy(k+Lk- sk)Kk- s(K)z(k - s(k)) (52)

It can be shown that, if we subtract D(k+1) from the a
priori covariance term% (k+1]k) and B(k+1) from the

estimation term  X(k +1 | k) , then the undesirable effect

of the old data on the new data is reduced. This effect is
further reduced as long as this subtraction process
continues. If we set D(k+1) and B(k+1) to zero, we
obtain the results of the classical Kaman filtering
agorithm.

V.S MULATION RESULTSAND CONCLUSIONS
In order to demonstrate the proposed GMW Kaman
filtering algorithm, the following function was used in the
moving windowing process. In this function, a is a
constant, x is observation estimate and N is the number of
samples.

f09=a xexp(log(x2) / N) (51)
The simulation results are shown in Figure 2. In this

Figure, OS represents the original signal that is being
estimated, GMW represents the estimate using the

proposed agorithm, MW represents the estimate
obtained using rectangular windowing and LSM
represents the estimate using least sguares mean
estimation technique. Figure 3 shows the estimation error,
which has been obtained by subtracting each estimate
from the original function. From these figures, it can be
observed that the performance of the proposed GMW
Kaman filtering algorithm is much superior than the MW
Kaman filtering and LSM estimation techniques.
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Figure 2. Comparison of the estimates due to different
estimation algorithm with respect to the original signal.
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Figure 3. Comparison of the estimationerrors of different
estimation algorithms.
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