

History & Future

Our day-to-day operations

275,000 deliveries per month

24,000 customers and 2,000 suppliers worldwide

1,200 active trademark rights and registrations worldwide

340 tonnes of **copper** and steel 200 tonnes of plastic 75,000,000,000 screws per month

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

IoT Use-Cases

Industrial Ethernet

Future Trends

Conclusion

17 warehouse locations

350 employees developing innovative solutions

20 ongoing research projects all over the world focusing on new technologies

1,000 training sessions and seminars per year

>1,200 talented young people acquiring new expertise every year.

History & Future

Weidmüller - an overview

Over

We connect **people**, markets and sectors.

Over **40** innovative products launched on the market each year

C.A.WEIDMÜLLER K.G. BERLEBE

Family-owned since 1850. Re-established in **1948** in Detmold.

Cabinet **Products** IoT Use-Cases

Industrial Ethernet

Future Trends

Conclusion

3

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

History & Future

Presenter

- \bullet
- Product Manager Industrial Ethernet and IoT ullet
- At Weidmüller since 2011
- M.Sc. Industrial Engineering and Management • Electronics

Conclusion

Sebastian Stelzer

History & Future

Storyline

- History Networking
- Actual figures
- IoT use-cases
- IoT-Topology
- IE as central element
- Trends
 - SPE
 - 5G
 - TSN
 - OPC UA
- Weidmüller offers

IoT Use-Cases

Industrial Ethernet

Future Trends

History & Future

History of Industry

INDUSTRY 1.0

Mechanization, steam power, weaving loom

Mass production, assembly line, electrical energy

....

INDUSTRY 2.0

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

http://blogs.brighton.ac.uk/thedigitalrevolution/2018/04/03/uk-preparing-students-fourth-industrial-revolution/

Industrial Ethernet Market Share

Ethernet is now covering ~60 % of new installed Nodes

Already?

Only?

There are use-cases where it makes no sense to change to **Industrial Etherent**

History & Future

The real reason behind the development

"Nobody does automation only for the sake of doing automation. The same applies to IoT"

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

IoT Use-Cases

Industrial Ethernet

Future Trends

History & Future

Creating added value through Industrial IoT

Benefits

- Optimised efficiency
- Business model innovations
- OPEX reduction
- and much more

IoT Use-Cases

Industrial Ethernet

Future Trends

Conclusion

Use cases

- Predictive maintenance
- Overall equipment effectiveness
- New service models
- and much more

History & Future

Use-cases for Industrial IoT

Mana Data Analytic	CS
Data	Co
Data	Pr
Dat	a
Digital Machine Inter	fac
Overall equipment effectiveness OEE	

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

Use case – machine/system connection to the cloud

Initial situation

As a machine manufacturer or system operator, I want to:

- Connect machines to an existing IoT platform or service platform
- Be able to directly connect new machines and upgrade existing machines
- Develop a new IoT platform or service platform and offer special services

Future Trends

Conclusion

Architecture

Use case – blade control as service

Initial situation

As a manufacturer or operator of wind power installations (WPI), I want to:

- Be able to see information or the condition of the rotor blade quickly and remotely
- Continually monitor the condition of every single rotor blade
- Improve the profitability of the whole WPI
- Reduce the downtime of the WPI

History & Future

Use case – predictive maintenance

Initial situation

As a machine manufacturer,

I want to:

- Plan maintenance work based on specific requirements (not based on intervals)
- Provide my production-based customers with information on any impending machine failures

Use case – in-process quality monitoring

Initial situation

As a machine manufacturer, I want to:

- Make statements regarding the quality of the process \bullet
- Be able to make statements regarding process deviations \bullet
- Be able to make predictions regarding future quality deviations

IoT Use-Cases

Industrial Ethernet

Future Trends

Conclusion

Architecture

History & Future

Use case – remote maintenance on machinery/systems

Initial situation

A machine manufacturer or system operator wants to be able to do the following in the event of a (predicted) error:

- Remotely access the machine or system in order to make modifications
- Support the operating company's on-site service team

Future Trends

Conclusion

Architecture

Use Case – IoT Serviceplattform

Initial situation

As a machine manufacturer, I want to:

- Offer my customers a service that meets their needs. \bullet
- Implement more efficient service planning and processing.
- Offer new service models. \bullet
- Improve customer retention.

Industrial Ethernet

History & Future

Many roads lead to Rome....

Conclusion

Acquire sensor and actuator data Development of parallel data structures

Capture control data

Direct access to the running PLC

Using Cloud infrastructures Transmit data to a cloud platform

Using own infrastructure Perform IoT on Edge or on a local server

Core functions of data-driven services

Despite the differences between the various use cases, the technical implementation of Industrial IoT solutions is essentially based on a few core functionalities

	-
sing	
tion	
ogic	

History & Future

Data pre-processing

Dedicated components for data pre-processing and data communication

PLC's

- Simple programming of control and IoT applications through web browser
- Use of u-remote sensor / actuator modules
- Node-RED with graphic • programming
- Range of predefined functions through open community
- IEC 61131-3

- Universal Edge Gateway with mobile communication connection LTE
- Node-RED
- interfaces.
- Web-based

IoT Use-Cases

Edge PCs

IoT Gateways

- Access to controls and
- sensors with diverse

- High performance through the latest processors and SSD technology
- PCI/PCIe interfaces for fieldbus cards
- Simple integration of additional resource management and visualisation solutions

History & Future

Data communication

Comprehensive range of industrial data communication solutions

IoT Use-Cases

Industrial Ethernet

Future Trends

Conclusion

- Stable connection with 4G /

Industrial WLAN

- Wireless integration of devices into a network
- Service access for mobile devices (e.g., smartphones/ laptops / etc.)

Remote access

- Remote access and maintenance
- administration
- Rights and firmware management

History & Future

The real reason behind the development

"The enabling factor for Industrial IoT is easyness. This requires consistency of technology"

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

IoT Use-Cases

Industrial Ethernet

Future Trends

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

History & Future

a

Ethernet Modbus

Ethernet Remote I/O Modbus

Ethernet Foundation FB ControlNet **DeviceNet** Profibus Sercos I & II **AS-Interface** Interbus FIP CC-Link CANopen Remote I/O Modbus

Safety Networks Sensor Netoworks WLAN Bluetooth OPC **BACnet IP** Sercos III Profinet IO/RT/IRT **EtherCAT** Powerlink CC-Link FF HSE Ethernet/IP FL-net Modbus TCP **BACnet MSP Foundation FB** ControlNer DeviceNet Profibus Sercos I & II **AS-Interface** Interbus CC-Link CANopen Modbus

WLAN Bluetooth **OPC UA** TSN

History & Future

Trends in industrial communication

https://www.it-production.com/allgemein/erstertsn-ethernet-switch-von-moxa/

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

IoT Use-Cases

Industrial Ethernet

Future Trends

Conclusion

https://www.lanline.de/neue-standards-fuer-singlepair-ethernet/

http://mdenetwork.com.ar/2017/05/12/la-importanciade-opc-en-la-construccion-de-una-industria-4-0/

History & Future

TSN

History & Future

SPE

Miniaturization for small field devices Less that $\frac{1}{4}$ of an RJ45 connector

High transmission distance Up to 1 km necessary in Process Industry

Variable Bandwidth

From 10 Mbit to 10 Gbit – ready for all use cases

Cost savings

Less wiring and assembly of connectors

Single Pair **Ethernet Structure**

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

History & Future

OPC UA

History & Future

Data communication via 5G

We are already working on the technologies of tomorrow today.

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

IoT Use-Cases

Industrial Ethernet

Future Trends

History & Future

Data communication via 5G

	IoT Use-Cases		Industrial l	Ethernet	Future	Frends	Conclusion	
-								
bud								
ation								
tical ap h	plication,							
ving Ca	l r							

History & Future

We gain experience from our own in-house production

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

IoT Use-Cases

Industrial Ethernet

Future Trends

History & Future

Engineering solutions: comprehensive range of housings with high level of flexibility

Conclusion

With a range of different housing concepts, we can provide you with the right basis for your individual Industrial IoT (retrofit) box

History & Future

Service package

Your service partner

We will accompany you on your path to the Industrial IoT

The product range is accompanied by customer-oriented services

- Application engineering Support in the creation of applications
- Electrical design Electrical design of your individual solution
- Connectivity consulting Concept development for the optimisation of processes, applications and control cabinets

History & Future

The basis of our Industrial IoT offer

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

IoT Use-Cases

Industrial Ethernet

Future Trends

Conclusion

u-mation More than automation. Digital solutions.

History & Future

Data acquisition

Wide range of hardware for data acquisition and signals in the field:

u-remote

- Acquires sensor signals and ulletcontrols actuators
- Communication modules ullete.g. for RS232, RS485, IOlink
- Perfect interaction with ucontrol and IoT Gateway

Energy meter

- Measures the energy consumption in detail
- Determines energy quality
- Analyses the currents of all connectors

- Converts, measures and separates signals securely and precisely
- Condition monitoring & diagnosis

IoT Use-Cases

Industrial Ethernet

Future Trends

Conclusion

converters

- Measurement of DC and AC
- currents

IoT terminal

- Acquires analogue and digital signals
- Transmits the acquired data via Narrowband IoT into the cloud

- Under development -

Power Mgmt.

- Powers machines and systems with 24 V / 48 V
- High overload capacity for short-term current demands
- Electronic fuses
- Enables smart grid systems to be established
- Able to communicate

History & Future

Data analysis | software

IoT Use-Cases

Industrial Ethernet

Future Trends

Data analysis | Industrial Analytics

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

Industrial Analytics | Assisted creation of models using Al

	€ Machine Learning Tool		Projec	ts EN - 🔅 Settings 🚱 Daniel Kress	€ Machine Lear	ning Tool	
Machine Learning Tool Machine Learning Tool Progene in a construction Model Creation Data Enrichment Turbo Compressor HST 200 Protect all relevant features that you want to use for the model creation. You can also use Feature Engineering to enrich your data set and able the result. Data Enrichment Protect all relevant features that you want to use for the model creation. You can also use Feature Engineering to enrich your data set and able the result. Data Enrichment Protect all relevant features that you want to use for the model creation. You can also use Feature Engineering to enrich your data set and able the result. Data Enrichment Protect Temp_M1 # Pint Protect all relevant features that you want to use for the model creation. You can also use Feature Engineering to enrich your data set and able the result. Model Creation We here an wen befor result. # derive_Temp_M1 # derive_Temp_M1 # derive_Temp_M1 Protect all relevant features that you want to use for the model creation. # derive_Temp_M1 # derive_Temp_M1 Protect all relevant features # Pint # derive_Temp_M1 # derive_Temp_M1 Protect all relevant features # pint # derive_Temp_M1 # derive_Temp_M1 Protect all relevant features # pint # derive_Temp_M1 # derive_Temp_M1 Protect all relevant features # pint # derive_Temp_M1 Protect all relevant features # derive_Temp_M1 # derive_Temp_M1 Protect all relevant features # pint # derive_Temp_M1 Protect all relevant features # pint # deriv	Model Creation Turbo Compressor HST 220 Image: Compressor HST 220 <t< th=""><th>Task Selection Anomaly Detection Detect deviations from normal machine behaviors. As precondition, you need a data set containing normal as well as abnormal machine behavior.</th><th>Classification Classify certain machine states, known failures, etc As precondition, you need a tagged data set. in which the periods of the desired classification target are marked.</th><th>Prediction Predict the occurrence of machine states, product qualities, machine failures, etc As precondition, you need a tagged data set, in which the desired prediction targets are marked.</th><th>Model Creat Turbo Compressed Task Definition Data Enrichme Tagging Summary Model Overview</th><th>Feature Engineering First Column Temp_M1 Operation Expression F(X) = X² F(X) = LOG(X) F(X) = SQRT(X)</th><th>100 80 50</th></t<>	Task Selection Anomaly Detection Detect deviations from normal machine behaviors. As precondition, you need a data set containing normal as well as abnormal machine behavior.	Classification Classify certain machine states, known failures, etc As precondition, you need a tagged data set. in which the periods of the desired classification target are marked.	Prediction Predict the occurrence of machine states, product qualities, machine failures, etc As precondition, you need a tagged data set, in which the desired prediction targets are marked.	Model Creat Turbo Compressed Task Definition Data Enrichme Tagging Summary Model Overview	Feature Engineering First Column Temp_M1 Operation Expression F(X) = X ² F(X) = LOG(X) F(X) = SQRT(X)	100 80 50
# Temp_M2 Z # RpmM1 Z # RpmM2 Z	Model Creation Turbo Compressor H Task Definition Task Definition Tagging Summary 1-C Model Overview	n ST 220 Data Enrichment Select all relevant features that yo achieve an even better result. Filter # mean_derive_Temp. created by Rress Maxing Cerester 0 30 100 # Psys Maxing Cerester 0 30 100 # Temp_M2	want to use for the model creation. You can ## derive_Temp_M1 created by Köster Hasing Ceretart Solution # Pnet Phot Hasing Ceretart Solution # Pnet Phot Solution # RpmM1	FEATURE ENGINEER A SELECT A SELECT A SELECT A Temp_M1 Temp_M1 Temp_M1 Select Select # RpmM2 # RpmM2		odel Creation ompressor HST 220 k Definition a Enrichment ging nmary del Overview 100 80 60 100 80 60 100 80 60 100 80 60 100 80 60 100 80 60 100 80 60 100 80 60 100 80 60 100 60 100 60 100 60 100 60 100 60 100 100 100 100 100 100 100 100 100 <th>In the graph Temp_M2 @</th>	In the graph Temp_M2 @

- Use anomaly recognition, classification and prediction with artificial intelligence simply for your own machine \bullet
- A Data Science Assistant leads through the model creation process \bullet
- The models can be operated immediately with the **execution environment** \bullet
- **Independent development** of the models over the life cycle

Industrial Ethernet

Future Trends

History & Future

Cloud service platforms

Basis for your individual datadriven services Your platform for new business models

History & Future

Cloud service platforms

Front-end design

Service portal, dashboards, customised applications, ...

Platform design

Back-end services, data services, ...

Agile system development

User journey, epics, sprints, ...

IoT Use-Cases

Industrial Ethernet

Future Trends

Data-driven services use your data to create added value

Condition monitoring

Continuous observation of signal values.

Overall Equipment Effectiveness (OEE)

Continuous improvement of system utilisation

We work with you to develop concrete application scenarios

vi. elektrik tesisat ulusal kongre ve sergisi programi | Industrial Communication as substantial element for Automation and Digitalization

IoT Use-Cases

Industrial Ethernet

Future Trends

Conclusion

Predictive maintenance

Detect errors before they occur

Energy management

System solution for the reduction of energy costs

Driven by our customers' requests

Weidmüller has a number of renowned customers, and we work together with these customers to develop individual Industrial IoT solutions. Here are just some examples...

The energy and compressed air consumption of existing systems is recorded using the EMS box, and the data transmitted to a central database

Industrial Ethernet

Conclusion

Energy data ESP NZ

Cloud platform Boge

The retrofitted Energy IoT box records energy data and forwards it to a cloud for analysis and report preparation

Online quality monitoring and increased machine availability through monitoring quality of the welding seam and prediction of tool wear.

Make machine data centrally accessible. Each machine can be monitored individually. Required functions such as service | analytics | and many more can be added

History & Future

Driven by our customers' requests

Analytics

Automotive construction

Analytics Ferag

Reduction of post-treatment by avoiding weld spatters through prediction of electrode wear.

Greater machine availability and lower maintenance costs through prediction of chain elongation and localisation of the error source.

Better understanding of injection moulding process and lower lockout through prediction of machine errors.

IoT Use-Cases

Analytics

Analytics Boge

Analytics Image data analysis

Reduced lockout and lower quality costs through analysis of image data during production and assembly process.

Tailored compressed air services to expand service business and reduce TCO for the operator.

Conclusion

Future Trends

