
PARALLEL FDTD-BASED RADAR CROSS SECTION SIMULATIONS
Mustafa Çakır1, Gonca Çakır1, Levent Sevgi2

1Kocaeli University, Electronics and Communication Engineering Department,
2Doğuş University, Electronics and Communication Engineering Department,

Zeamet Sok. No.21, Acıbadem/Kadıköy, İstanbul, Turkey
Email: gonca@kou.edu.tr

Key words: Parallel processing, parallel computing, computational electromagnetics, time-domain simulations, FDTD,

RCS, antennas, near fields, far fields, DFT, FFT.

ABSTRACT
FDTD-based radar cross section (RCS) and antenna
simulations is discussed. The main FDTD volume is
left as is in the classical FDTD method, but the task of
the near-to-far-field transformation (NTFFT) module
is distributed. Tests with different scenarios show that
a computation gain of 3 to 7 may be reached with this
approach.

I. INTRODUCTION
Parallel processing in computers is based on dividing a
computer code into a number of sections and distributing
the task among a number of computers/processors, all of
which are executed in parallel. This may be achieved on
hardware-level, software level, or both. Hardware-level
parallellization necessitates alternative processor designs.
Software-level parallellization can be either on data level
or function level, depending on the characteristics of the
code.

FDTD is one of the most attractive and suitable methods
for the parallelization [1]. There are many FDTD-Based
parallelization studies in the literature [2-5], all of which
deal with the main FDTD volume. In this study, a novel
parallelization approach for FDTD-based RCS and
antenna simulations is introduced. FDTD-based RCS
prediction and radiation pattern plots require far field
simulations. Unfortunately, FDTD simulations are
performed in a discrete 3D finite volume therefore, a kind
of a near-to-far-field transformation (NTFFT) is essential
during the time-domain computations [6]. Most of the
FDTD simulators developed for RCS and antenna
problems have three main modules; the 3D FDTD module
itself, the open-boundary simulators (OBS), and the
NTFFT routine [7].

II. STANDARD FDTD-RCS ALGORITHM
A 3D finite physical volume is reserved for the discrete
models in FDTD method and Maxwell equations are run
in discrete iterative form. The standard FDTD procedure
for the RCS and antenna simulations [7-10] is as follows:

• Discrete target or antenna model is located at the
center of the 3D FDTD volume and initial
parameters are set.

• A broadband source is injected. It is a pulsed voltage
for the antenna, but a pulsed Gaussian plane wave
for the RCS simulations.

• At each time step, all electric and magnetic field
components inside the 3D FDTD volume is
calculated using 6 iterative E/H equations.

• Far-fields are extrapolated along a number of chosen
directions using surface electric and magnetic
currents over this virtual surface [6].

• The NTFFT is based on the accumulation of the far
zone vector potentials due to the tangential electric
and magnetic fields on a virtual, closed surface
surrounding the object under investigation at each
time step.

• The NTFFT process is repeated for every other
angular direction. For example, if an angular
radiation or RCS pattern with 1° angular resolution
is specified, the NTFFT procedure is repeated for
361 different directions at every time step.

• At the end, off-line DFT is applied for a given
number of frequencies, and RCS or radiation
patterns are obtained.

A novel FDTD-based RCS prediction virtual tool is
presented in [11,12]. It contains a powerful tool which
creates discrete models from graphics file images. Any
kind of a target with non-penetrable boundaries can be
created using basic blocks such as rectangular prism,
cone, cylinder, sphere, etc. Moreover, a collection of pre-
designed surface and air targets stored in 3DS (3D Studio
file, visit www.autodesk.com for details) format files are
also supplied. The virtual tool creates discrete FDTD and
MoM models from either 3DS files or user-created
objects. A typical discrete FDTD model is given in Fig. 1.
Its bi-static RCS pattern is given in Fig. 2. The plot
corresponds to vertical scan and curves are normalized to
30 dB (RCSmax is given in inset).

Figure 1: Discrete 15 m-long F16 model

Figure 2: An angular bi-static RCS pattern (f=80 MHz,
θi=90°, ϕi=90°, ϕs=90°, 0°≤θs≤360°, ∆θ=3°, Vertical
scan, σϕϕ-case), Solid: FDTD, Dashed: MoM

III. THE PARALLEL FDTD ALGORITHM
Function-level parallellization is used in this study [13].
The new parallel-FDTD algorithm has 7 blocks. The first
block is responsible for the initializations, main 3D FDTD
computations, as well as the termination. It also includes
off-line DFT process and output presentations. The other
6 blocks are reserved for the parallellization of the
NTFFT procedure. Each of these 6 blocks is reserved for
the far field extrapolation on each of 6 facets of the virtual
NTFFT closed surface. The algorithm for single program
multiple data (SPMD) structure is presented in Fig. 3. On
the left, the time-loop of the standard FDTD method is
given. On the right, the flow chart of the novel parallel
FDTD method is shown. The unique SPMD executable
code is copied onto all 7 nodes. Each node executes a
block having a block ID, same as the node ID.
Parallellization may be achieved alternatively via multiple
program multiple data (MPMD) using seven different
codes for the seven nodes. Obviously, MPMD has the
advantage of writing down small-sized codes without

brunching with ID tags inside a unique code. Its
disadvantage is that one needs to write down a different
code for each processor.

Figure 3: Flow charts of (a) classical FDTD procedure,
(b) the novel parallel FDTD approach. The idea is to run
FDTD and NTFFT modules simultaneously and distribute
NTFFT burden to parallel processors.

The NTFFT is naturally suitable for the parallellization if
its task is distributed onto 6 processors; each extrapolating
far fields on a single facet of the virtual NTFFT closed
surface along a number of directions separately. One aim
is to increase the numerical computation performance up
to an optimum level with available computer resources.
Therefore, a 7-node parallellization not only speeds up the
computations but also extends range of applicability. The
parallel FDTD algorithm is designed in a way so that one
can use computers, for example, in a student lab, or
computers of roommates connected as a message-based
network [13].

A sample task progress report of the 7-block parallel
FDTD code is pictured in Fig. 4. This figure belongs to a
scenario labeled as S3-D1 (see Table 1). Here, 7
horizontal strips correspond to 7 processor nodes. The
strip on the top corresponds to the main FDTD node,
while the others to 6 NTFFT nodes. Dark and light gray
portions on each strip specify busy and idle statuses,
respectively. Start of the parallel FDTD computation is
marked as 0=t . Each cycle in the FDTD time loop
corresponds to t∆ seconds. The first two time cycles are
also marked. At the end of each cycle the FDTD node
passes newly calculated E/H data to 6 NTFFT nodes. This
is a forward data transfer. After the code runs for a
specified number of cycles (i.e., when tNt ∆≥ , N being
the number of user-specified time steps) the NTFFT data
from 6 nodes are backward transferred to the main FDTD
node. Off-line DFT calculations are then performed and
polar RCS diagrams are plotted.

Obviously, optimum performance is obtained when all 7
horizontal strips are busy (i.e., when all the nodes are
running) at the same time. This means all 7 processors
have almost the same computation burden for each time

cycle; nobody has to wait nobody. In Fig. 4, it is observed
that the main FDTD node runs nonstop. It only waits for a

while for data transfer from 6 NTFFT nodes at the end.
Observe that NTFFT nodes are busy for almost 85-90 %

Figure 4: Task progress report of the parallel-FDTD code. Horizontal axis shows the time progress. Seven horizontal
strips represent statue of seven blocks. Dark and light gray sections of the strips correspond to durations of computing
and waiting, respectively. Lines represent data transfer instants from the main FDTD block to 6 NTFFT blocks.

of each cycle. Two other task progress reports are given in
Fig. 5. On the top, it is shown that 6 NTFFT nodes run for
a while (less that 15-20% of a time cycle) and then waits
for a long time for the E/H data of the next cycle. Note
also that, computation times of all 6 NTFFT nodes are
different. Similar observations are valid for the task
progress report at the bottom. This is the case when
computation burden of the main FDTD node is much
more than the NTFFT nodes.

IV. TYPICAL SCENARIOS AND TESTS
A few RCS prediction scenarios are designed to test the
novel parallel-FDTD code [13]. These are listed in Table
1.

Table 1: Three typical RCS scenarios

Symmetric Multi-processor (SMP) Parallelization
The first analysis belongs to multitasking and is
performed on a single PC, using threads in the Windows
environment. Main block is responsible for the FDTD
iterations, and final off-line DFT calculations. The
threads 1 to 6 perform the NTFFT at each time step.
Threads 1 and 2 perform NTFFT at x=constant surface
(left and right yz-facets), threads 3 and 4 perform NTFFT

at y=constant surface (front and back xz-facets), and
threads 5 and 6 perform NTFFT at z=constant surface
(top and bottom xy-facets).

Two different PCs are used in these tests; an Asus Laptop
and an IBM Server. The Asus laptop has F3JC series 1
Intel Core2Duo processor T5600 with 1.83 GHz CPU and
1 GB RAM Memory. IBM Server has 2 DualCore Intel
Xeon processors with 3.00 GHz CPU and 4 GB RAM
memory. The results are given in Fig. 5 for the three
scenarios and with both o5=∆ϕ and o1=∆ϕ angular
resolutions. Vertical axis corresponds to the
parallelization gain. Note that, gain of the standard FDTD
simulations with the same parameters is “1”. The number
of NTFFT applications for these two cases are 73 and
361, respectively. This means the NTFFT computation
burden for o1 resolution is almost 5 times more than the
burden of o5 resolution test. As observed in Fig. 5, the
efficiency of the parallellization for the 4-processor IBM
is higher than the efficiency of the 2-processor Asus PC.
Maximum gain is 3.25 and is obtained for the S1-D1
scenario. The conclusion of this first test is that, even on a
single SMP platform (i.e., a laptop having almost
standardized configuration of core2duo processor) a
significant gain may be obtained via thread-based
multitasking.

Message Passing Interface (MPI) Parallelization
Parallellization performance tests with multi computers
are carried out for homogeneous and heterogeneous

computers. Fourteen computers used during these tests
and their technical specs are different. The first 7 PCs
(labeled as PC-1 to PC-7) are terminals in a lab, have the
same technical specifications: 667 MHz CPUs and 128
MB RAM memories. PC-8 is an IBM Laptop with 2.4
GHz CPU and 512 MB RAM memory. The other PCs
from PC-9 to PC-14 are the desktops of colleagues in next
doors in a corridor of the EE department of Kocaeli
University. The tests are performed on two different
platforms which are prepared using Linux Slackware and
Parallel-Knoppix versions.

Figure 5: Parallel FDTD run using threads on a single PC
in the Windows environment: Asus vs. IBM Server.
Vertical axis shows the computation gain. The gain of the
standard FDTD is “1”.

Although MPMD programming has the disadvantage of
writing a module for every node, overall, the codes are
much shorter and simpler when compared to SPMD. Plus,
MPMD does not need control modules. Tests performed
with MPMD and SPMD programming showed that there
is no significant gain difference in the parallel-FDTD
simulations (at least, for the scenarios and parameter sets
used in this paper).

The first MPI-based parallellization test is performed on a
platform where PC-8 is reserved for the FDTD node, and,
PC-9 to PC-14 for 6 NTFFT nodes. Scenario-1 with both
S1-D5 and S1-D1 cases is taken into account. The results
of this heterogeneous test are given in Table 2. Table 2a
shows the computation times for the standard FDTD
simulations. The time for the main FDTD node and 6
NTFFT nodes are also given separately. The results of
parallel-FDTD tests performed on the platforms using
Linux Slackware and Parallel-Knoppix are listed in Table
2b. The PCs used for the main FDTD node and 6 NTFFT
nodes are listed separately in the table. As observed, there
is no significant performance difference between the two
platforms. It is interesting to note that although D1
NTFFT is 5 times more than D5 NTFFT calculations the
difference between these two is less than 15%. But, if the
values of Table 2b are compared against the values in

Table 2a, it is seen that parallellization gain for the
scenario S1-D1 is much higher than the scenario S1-D5.

Table 2a: Standard FDTD performances for Scenario-1

Table 2b: Parallel FDTD performances for Scenario-1

It should be noted that the parallellization is applied only
to the NTFFT routine and the main FDTD routine is left
as it is in the standard FDTD case. Therefore, the
computation time of the parallel-FDTD simulations can
not be less than the time of the standard-FDTD (without
NTFFT). Therefore, the computation gain comes from the
NTFFT parallellization. The average NTFFT time for the
S1-D5 scenario is nearly 72 s (see Table 2a). If the
NTFFT burden to be distributed equally over 6
homogeneous computers the parallel computation time
would be 72/6=12 s. In this case, the FDTD node
dominates the total simulation time. The highest
computation gain may be reached with this parallel FDTD
if the computation burden of all 6 NTFFT nodes is the
same and equal to the main FDTD node. In this case,
parallellization gain during the numerical simulations
would be 7. If for the standard FDTD simulations, the
FDTD computation time is greater than the NTFFT
computation time over 6, the gain reduces to 6 and total
computation time is determined by the FDTD
computations. If this is the case, it is best to run the main
FDTD node on the highest performance PC.

The final test belongs to Scenario-3 run on 7
homogeneous PCs. Table 3 lists the computation times of
both standard-FDTD and parallel-FDTD runs. The gains
for S3-D5 and S3-D1 are (103.640/55.603=1.86) and
(304.210/65.952=4.61), respectively. It should be noted
that the scenario S1-D1 can not be run on each of the
same terminals with 128 MB RAM memories with
standard-FDTD because of the hardware limitations.

 Table 3: Standard vs. Parallel FDTD on homogeneous
PCs for Scenario-3

V. CONCLUSION
A novel parallel-FDTD approach for RCS and antenna
simulations is discussed. The performance of the parallel-
FDTD run on heterogeneous computers may be optimized
using non-cubical 3D-FDTD volume. In this case, the
number of cells on the facets of the virtual NTFFT closed
surface is different. The largest/smallest facets may be
assigned to the fastest/slowest PC. Even for the cubical
3D-FDTD volume one still can specify a non-cubical
virtual NTFFT closed surface and run parallel FDTD
code. Alternatively, if the available PCs are homogeneous
it is best to choose a cubical virtual NTFFT closed surface
so that each NTFFT node has exactly the same
computation burden.

REFERENCES

[1] K. S. Yee, "Numerical Solution of Initial Boundary
Value Problems Involving Maxwell Equations,"
IEEE Trans. Antennas and Propagat., V-14, No.3,
pp.302-307, May 1966.

[2] Vineet Ahuja, Lyle N. Long, “A Parallel Finite-
Volume Runge-Kutta Algorithm for EM
Scattering,” Journal of Computational Physics 137,
299-300 (1997), Article No. CP975802

[3] C. Guiffaut, K. Mahdjoubi, “A Parallel FDTD
Algorithm Using the MP Library,” IEEE Antennas
and Propagation Magazine, Vol. 43, No. 2, April
2001

[4] Wang Huiling, XUE Zhenghui, YANG Shimming,
GAO Benqing, “Near-field Scattering Analysis
with Parallel FDTD Algorithm,” IEEE
International Symposium on Microwave, Antenna,
Propagation and EMC Technologies for Wireless
Communications Proceedings 2005

[5] Wang Chen, Panos Kosmas, Miriam Leeser, Carey
Rappaport, “An FPGA Implementation of the
Two-Dimensional Finite Difference Time Domain
(FDTD) Algorithm,” Proceedings of the 2004
ACM/SIGDA 12th international symposium on
Field Programmable Gate Arrays, Pages 213-222
Monterey, California, USA 2004

[6] R. J. Luebbers et. al. "A Finite-Difference Time-
Domain Near Zone to Far Zone Transformation,"
IEEE Trans. Antennas and Propagat., Vol.39,
No.4, pp.429-433, 1991.

[7] L. Sevgi, Complex Electromagnetic Problems and
Numerical Simulation Approaches, IEEE Press –
John Wiley & Sons, Piscataway, New Jersey,
2003.

[8] L. Sevgi, S. Paker, "FDTD Based RCS
Calculations and Antenna Simulations," AEU,
International J. of Electronics and Commun.,
Vol.52, No.2, pp.65-75, March 1998

[9] L. Sevgi, “Target Reflectivity and RCS Interaction
in Integrated Maritime Surveillance Systems Based
on Surface Wave HF Radar Radars,” IEEE
Antennas and Propagation Magazine, pp. 36-51,
Feb. 2001

[10] L. Sevgi, "Numerical Simulation Approaches for
Phased Array Design", ACES Journal of Applied
Computational Electromagnetic Society, Special
issue on Phased Array Design, (invited tutorial),
Vol. 21, No.3, pp. 206-217, Nov 2006

[11] Ç. Uluışık, , G. Çakır, M. Çakır, L. Sevgi, “Radar
Cross section (RCS) Modeling and Simulation:
Part I – A Tutorial Review of Definitions,
Strategies, and Canonical Examples,” IEEE
Antennas and Propagation Magazine, (under
review) Jun 2007

[12] G. Çakır, M. Çakır, L. Sevgi, “Radar Cross section
(RCS) Modeling and Simulation: Part II – A Novel
FDTD-Based RCS Prediction Virtual Tool for the
Resonance Regime,” IEEE Antennas and
Propagation Magazine, (under review) Jun 2007

[13] M. Çakır, G. Çakır, L. Sevgi, “A Novel
Parallellization Approach for Radar Cross section
(RCS) and Antenna Simulations”, IEEE
Transactions on Antennas and Propagation,
(submitted) Jun 2007

