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ABSTRACT 
FDTD-based radar cross section (RCS) and antenna 
simulations is discussed. The main FDTD volume is 
left as is in the classical FDTD method, but the task of 
the near-to-far-field transformation (NTFFT) module 
is distributed. Tests with different scenarios show that 
a computation gain of 3 to 7 may be reached with this 
approach. 
 

I. INTRODUCTION 
Parallel processing in computers is based on dividing a 
computer code into a number of sections and distributing 
the task among a number of computers/processors, all of 
which are executed in parallel.  This may be achieved on 
hardware-level, software level, or both. Hardware-level 
parallellization necessitates alternative processor designs. 
Software-level parallellization can be either on data level 
or function level, depending on the characteristics of the 
code.   
 
FDTD is one of the most attractive and suitable methods 
for the parallelization [1]. There are many FDTD-Based 
parallelization studies in the literature [2-5], all of which 
deal with the main FDTD volume. In this study, a novel 
parallelization approach for FDTD-based RCS and 
antenna simulations is introduced. FDTD-based RCS 
prediction and radiation pattern plots require far field 
simulations. Unfortunately, FDTD simulations are 
performed in a discrete 3D finite volume therefore, a kind 
of a near-to-far-field transformation (NTFFT) is essential 
during the time-domain computations [6]. Most of the 
FDTD simulators developed for RCS and antenna 
problems have three main modules; the 3D FDTD module 
itself, the open-boundary simulators (OBS), and the 
NTFFT routine [7].   
 

II. STANDARD FDTD-RCS ALGORITHM 
A 3D finite physical volume is reserved for the discrete 
models in FDTD method and Maxwell equations are run 
in discrete iterative form. The standard FDTD procedure 
for the RCS and antenna simulations [7-10] is as follows: 

• Discrete target or antenna model is located at the 
center of the 3D FDTD volume and initial 
parameters are set.  

• A broadband source is injected. It is a pulsed voltage 
for the antenna, but a pulsed Gaussian plane wave 
for the RCS simulations. 

• At each time step, all electric and magnetic field 
components inside the 3D FDTD volume is 
calculated using 6 iterative E/H equations. 

• Far-fields are extrapolated along a number of chosen 
directions using surface electric and magnetic 
currents over this virtual surface [6].   

• The NTFFT is based on the accumulation of the far 
zone vector potentials due to the tangential electric 
and magnetic fields on a virtual, closed surface 
surrounding the object under investigation at each 
time step.  

• The NTFFT process is repeated for every other 
angular direction. For example, if an angular 
radiation or RCS pattern with 1° angular resolution 
is specified, the NTFFT procedure is repeated for 
361 different directions at every time step. 

• At the end, off-line DFT is applied for a given 
number of frequencies, and RCS or radiation 
patterns are obtained. 

 
A novel FDTD-based RCS prediction virtual tool is 
presented in [11,12]. It contains a powerful tool which 
creates discrete models from graphics file images. Any 
kind of a target with non-penetrable boundaries can be 
created using basic blocks such as rectangular prism, 
cone, cylinder, sphere, etc. Moreover, a collection of pre-
designed surface and air targets stored in 3DS (3D Studio 
file, visit www.autodesk.com for details) format files are 
also supplied. The virtual tool creates discrete FDTD and 
MoM models from either 3DS files or user-created 
objects. A typical discrete FDTD model is given in Fig. 1. 
Its bi-static RCS pattern is given in Fig. 2. The plot 
corresponds to vertical scan and curves are normalized to 
30 dB (RCSmax is given in inset).  



 

 
Figure 1: Discrete 15 m-long F16 model 

 

 
Figure 2: An angular bi-static RCS pattern (f=80 MHz, 
θi=90°, ϕi=90°, ϕs=90°, 0°≤θs≤360°, ∆θ=3°, Vertical 
scan, σϕϕ-case), Solid: FDTD, Dashed: MoM 
 

III. THE PARALLEL FDTD ALGORITHM 
Function-level parallellization is used in this study [13]. 
The new parallel-FDTD algorithm has 7 blocks. The first 
block is responsible for the initializations, main 3D FDTD 
computations, as well as the termination. It also includes 
off-line DFT process and output presentations. The other 
6 blocks are reserved for the parallellization of the 
NTFFT procedure. Each of these 6 blocks is reserved for 
the far field extrapolation on each of 6 facets of the virtual 
NTFFT closed surface. The algorithm for single program 
multiple data (SPMD) structure is presented in Fig. 3. On 
the left, the time-loop of the standard FDTD method is 
given. On the right, the flow chart of the novel parallel 
FDTD method is shown. The unique SPMD executable 
code is copied onto all 7 nodes. Each node executes a 
block having a block ID, same as the node ID. 
Parallellization may be achieved alternatively via multiple 
program multiple data (MPMD) using seven different 
codes for the seven nodes. Obviously, MPMD has the 
advantage of writing down small-sized codes without 

brunching with ID tags inside a unique code. Its 
disadvantage is that one needs to write down a different 
code for each processor.         
 

 
Figure 3: Flow charts of (a) classical FDTD procedure, 
(b) the novel parallel FDTD approach. The idea is to run 
FDTD and NTFFT modules simultaneously and distribute 
NTFFT burden to parallel processors.  
 
The NTFFT is naturally suitable for the parallellization if 
its task is distributed onto 6 processors; each extrapolating 
far fields on a single facet of the virtual NTFFT closed 
surface along a number of directions separately. One aim 
is to increase the numerical computation performance up 
to an optimum level with available computer resources. 
Therefore, a 7-node parallellization not only speeds up the 
computations but also extends range of applicability. The 
parallel FDTD algorithm is designed in a way so that one 
can use computers, for example, in a student lab, or 
computers of roommates connected as a message-based 
network [13]. 
 
A sample task progress report of the 7-block parallel 
FDTD code is pictured in Fig. 4. This figure belongs to a 
scenario labeled as S3-D1 (see Table 1). Here, 7 
horizontal strips correspond to 7 processor nodes. The 
strip on the top corresponds to the main FDTD node, 
while the others to 6 NTFFT nodes. Dark and light gray 
portions on each strip specify busy and idle statuses, 
respectively. Start of the parallel FDTD computation is 
marked as 0=t .  Each cycle in the FDTD time loop 
corresponds to t∆ seconds. The first two time cycles are 
also marked. At the end of each cycle the FDTD node 
passes newly calculated E/H data to 6 NTFFT nodes. This 
is a forward data transfer. After the code runs for a 
specified number of cycles (i.e., when tNt ∆≥ , N  being 
the number of user-specified time steps) the NTFFT data 
from 6 nodes are backward transferred to the main FDTD 
node. Off-line DFT calculations are then performed and 
polar RCS diagrams are plotted.  
 
Obviously, optimum performance is obtained when all 7 
horizontal strips are busy (i.e., when all the nodes are 
running) at the same time. This means all 7 processors 
have almost the same computation burden for each time 



cycle; nobody has to wait nobody. In Fig. 4, it is observed 
that the main FDTD node runs nonstop. It only waits for a 

while for data transfer from 6 NTFFT nodes at the end. 
Observe that NTFFT nodes are busy for almost 85-90 %  

 
Figure 4: Task progress report of the parallel-FDTD code. Horizontal axis shows the time progress. Seven horizontal 
strips represent statue of seven blocks. Dark and light gray sections of the strips correspond to durations of computing 
and waiting, respectively. Lines represent data transfer instants from the main FDTD block to 6 NTFFT blocks. 
 
 
of each cycle. Two other task progress reports are given in 
Fig. 5. On the top, it is shown that 6 NTFFT nodes run for 
a while (less that 15-20% of a time cycle) and then waits 
for a long time for the E/H data of the next cycle. Note 
also that, computation times of all 6 NTFFT nodes are 
different. Similar observations are valid for the task 
progress report at the bottom. This is the case when 
computation burden of the main FDTD node is much 
more than the NTFFT nodes. 
  

IV. TYPICAL SCENARIOS AND TESTS 
A few RCS prediction scenarios are designed to test the 
novel parallel-FDTD code [13]. These are listed in Table 
1.  

Table 1: Three typical RCS scenarios 

 
 

Symmetric Multi-processor (SMP) Parallelization 
The first analysis belongs to multitasking and is 
performed on a single PC, using threads in the Windows 
environment. Main block is responsible for the FDTD 
iterations, and final off-line DFT calculations. The 
threads 1 to 6 perform the NTFFT at each time step. 
Threads 1 and 2 perform NTFFT at x=constant surface 
(left and right yz-facets), threads 3 and 4 perform NTFFT 

at y=constant surface (front and back xz-facets), and 
threads 5 and 6 perform NTFFT at z=constant surface 
(top and bottom xy-facets).  
 
Two different PCs are used in these tests; an Asus Laptop 
and an IBM Server. The Asus laptop has F3JC series 1 
Intel Core2Duo processor T5600 with 1.83 GHz CPU and 
1 GB RAM Memory. IBM Server has 2 DualCore Intel 
Xeon processors with 3.00 GHz CPU and 4 GB RAM 
memory. The results are given in Fig. 5 for the three 
scenarios and with both o5=∆ϕ and o1=∆ϕ angular 
resolutions. Vertical axis corresponds to the 
parallelization gain. Note that, gain of the standard FDTD 
simulations with the same parameters is “1”. The number 
of NTFFT applications for these two cases are 73 and 
361, respectively. This means the NTFFT computation 
burden for o1 resolution is almost 5 times more than the 
burden of o5 resolution test. As observed in Fig. 5, the 
efficiency of the parallellization for the 4-processor IBM 
is higher than the efficiency of the 2-processor Asus PC. 
Maximum gain is 3.25 and is obtained for the S1-D1 
scenario. The conclusion of this first test is that, even on a 
single SMP platform (i.e., a laptop having almost 
standardized configuration of core2duo processor) a 
significant gain may be obtained via thread-based 
multitasking. 
 

Message Passing Interface (MPI) Parallelization 
Parallellization performance tests with multi computers 
are carried out for homogeneous and heterogeneous 



computers. Fourteen computers used during these tests 
and their technical specs are different. The first 7 PCs 
(labeled as PC-1 to PC-7) are terminals in a lab, have the 
same technical specifications: 667 MHz CPUs and 128 
MB RAM memories. PC-8 is an IBM Laptop with 2.4 
GHz CPU and 512 MB RAM memory. The other PCs 
from PC-9 to PC-14 are the desktops of colleagues in next 
doors in a corridor of the EE department of Kocaeli 
University. The tests are performed on two different 
platforms which are prepared using Linux Slackware and 
Parallel-Knoppix versions. 
 

 
Figure 5: Parallel FDTD run using threads on a single PC 
in the Windows environment: Asus vs. IBM Server. 
Vertical axis shows the computation gain. The gain of the 
standard FDTD is “1”.  
 
Although MPMD programming has the disadvantage of 
writing a module for every node, overall, the codes are 
much shorter and simpler when compared to SPMD. Plus, 
MPMD does not need control modules. Tests performed 
with MPMD and SPMD programming showed that there 
is no significant gain difference in the parallel-FDTD 
simulations (at least, for the scenarios and parameter sets 
used in this paper).   
 
The first MPI-based parallellization test is performed on a 
platform where PC-8 is reserved for the FDTD node, and, 
PC-9 to PC-14 for 6 NTFFT nodes. Scenario-1 with both 
S1-D5 and S1-D1 cases is taken into account. The results 
of this heterogeneous test are given in Table 2. Table 2a 
shows the computation times for the standard FDTD 
simulations. The time for the main FDTD node and 6 
NTFFT nodes are also given separately. The results of 
parallel-FDTD tests performed on the platforms using 
Linux Slackware and Parallel-Knoppix are listed in Table 
2b. The PCs used for the main FDTD node and 6 NTFFT 
nodes are listed separately in the table. As observed, there 
is no significant performance difference between the two 
platforms. It is interesting to note that although D1 
NTFFT is 5 times more than D5 NTFFT calculations the 
difference between these two is less than 15%.  But, if the 
values of Table 2b are compared against the values in 

Table 2a, it is seen that parallellization gain for the 
scenario S1-D1 is much higher than the scenario S1-D5. 
    

Table 2a: Standard FDTD performances for Scenario-1 

 
 

Table 2b: Parallel FDTD performances for Scenario-1 

 
 
It should be noted that the parallellization is applied only 
to the NTFFT routine and the main FDTD routine is left 
as it is in the standard FDTD case. Therefore, the 
computation time of the parallel-FDTD simulations can  
not be less than the time of the standard-FDTD (without 
NTFFT). Therefore, the computation gain comes from the 
NTFFT parallellization. The average NTFFT time for the 
S1-D5 scenario is nearly 72 s (see Table 2a). If the 
NTFFT burden to be distributed equally over 6 
homogeneous computers the parallel computation time 
would be 72/6=12 s. In this case, the FDTD node 
dominates the total simulation time. The highest 
computation gain may be reached with this parallel FDTD 
if the computation burden of all 6 NTFFT nodes is the 
same and equal to the main FDTD node. In this case, 
parallellization gain during the numerical simulations 
would be 7. If for the standard FDTD simulations, the 
FDTD computation time is greater than the NTFFT 
computation time over 6, the gain reduces to 6 and total 
computation time is determined by the FDTD 
computations. If this is the case, it is best to run the main 
FDTD node on the highest performance PC. 
   
The final test belongs to Scenario-3 run on 7 
homogeneous PCs. Table 3 lists the computation times of 
both standard-FDTD and parallel-FDTD runs. The gains 
for S3-D5 and S3-D1 are (103.640/55.603=1.86) and 
(304.210/65.952=4.61), respectively. It should be noted 
that the scenario S1-D1 can not be run on each of the 
same terminals with 128 MB RAM memories with 
standard-FDTD because of the hardware limitations. 
 



 Table 3: Standard vs. Parallel FDTD on homogeneous 
PCs for Scenario-3 

 
 

V.  CONCLUSION 
A novel parallel-FDTD approach for RCS and antenna 
simulations is discussed. The performance of the parallel-
FDTD run on heterogeneous computers may be optimized 
using non-cubical 3D-FDTD volume. In this case, the 
number of cells on the facets of the virtual NTFFT closed 
surface is different. The largest/smallest facets may be 
assigned to the fastest/slowest PC.  Even for the cubical 
3D-FDTD volume one still can specify a non-cubical 
virtual NTFFT closed surface and run parallel FDTD 
code. Alternatively, if the available PCs are homogeneous 
it is best to choose a cubical virtual NTFFT closed surface 
so that each NTFFT node has exactly the same 
computation burden.   
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