
CODING AND DECODING OF THE MATROID CODES

Ghenadie Bodean
e-mail: gbodean@mail.md

Technical University of Moldova, Faculty of Radioelectronics and Telecommunications, Department of Computer
Design, MD2012, St. cel Mare,168, Kishinau, R.Moldova

Key words: Burst errors, matroid code, finite field operations

ABSTRACT

Encoder and decoder algorithm of the matroid burst
errors correcting code is defined. Constant
multiplications is considered, and are shown the
circuits implemented in the XOR-basis that drastically
reduces the encoder/decoder complexity. The features
of the matroid code encoding/decoding are analysed.

I. INTRODUCTION
It is known [1] that the upper bound of error correcting
capabilities of the burst errors correcting code block is
equal (n-k)/2, where n is the codeword length and k is the
number of information (original) symbols in the
codeword. Recently in [2] has been proposed a new class
of errors correcting code (ECC), named matroid ECC,
whose efficiency is impressive and is equal to k. But
unlike the classical encoding/decoding technology the
matroid codes (or M-code) don’t perform a correction in
the sense of this word. In essence matroid coding
performs a restoration of the transmitted information, i.e.
data.

Take an example. Begin from the notion “matroid” that
has been proposed by Hassler Whitney [3]. H.Whitney
used this notion to generalize the property of linear
independence in vector space. Code words of ECC also
can be interpreted as the vector’s coordinates. A restricted
number of vectors that are linear independent, i.e. form a
basis in the given vector spaces, can be found. For
example, in the vector space of rank 2 over Galois field
GF(2) can be distinguished the following basis:

)1(.
11
10

,
10
11

,
10
01

321 







=








=








= BBB

Columns of the matrix B in (1) are the coordinates of
vectors of the length r, r= 2.

The matrix

)2(,
110
101








=×nrA

contains a so-called collection of sub matrix B from (1).
It’s said that matrix A represents the matroid M (or
matroid M is represented by A) and this is denoted by
M[A].
Moreover, by definition the matroid of matrix (2) is a
uniform matroid [4].

Matrix A can be used to generate the code words (vectors)
of M-code:

v= x⋅A, (3)

where x= <x1,… ,xr> is a vector of original information
symbols; v=<v1, … , vn> is an output (transmitted) vector.

The right side of (3) represents a system of linear
equations with additive and multiplicative operations over
field GF(2); such subsystem of rank r= 2 represented by
one of the matrix (1) is a system of linear independent
equations.

The last remark has a very substantial significance!
Coding is performed to correct the erroneous symbols.
And from any of linear independent subsystems of A
always can be restored the original symbols of x. in
particular, the matroid M[A], represented by matrix (2), is
“capable” to correct one error.

So from (3) results:

v=<v1,v2,v3>=x⋅A= <x1,x2>⋅ 







110
101 =<x1, x2, x1+ x2>,

where x1→ v1, x2→ v2 and x1+x2→ v1.

If any symbol of v was distorted in the transmission time,
then the other remaining two symbols of v will be “help”
to restore the failed components of the original vector x.
There are three cases (see Table 1) of restoration.

Certainly that given example is very trivial to imagine the
full “beauty” of restoration.

The cardinality of matrix A is insufficient to increase the
correction capability (efficiency) of the analysed M-code!
That is why it’s needed to pass to the vector spaces of a
greater dimension. On such a transition inevitably appears
the necessity to extend the basis, i.e. to pass to an
extended Galois field GFr(2m) of degree of r and
characteristics 2m. Degree m defines the number of bits
(binarity) per codeword symbol.

Paper [5] introduces to theoretical fundamentals of the
matroid code construction. In this work will be analysed
the particularities of M-code encoding and decoding.

II. ENCODER OF THE MATROID CODE
Function of the error-correcting matroid code is
determined by transformation (3): on the enter is the
source codeword x of length r with m-binary symbols; on
the exit is the codeword v with the twice length, i.e. equal
to 2r, with also m-binary symbols; (en)coder performs the
matrix multiplication of x on A over field GFr(2m), where
matrix A represents a corresponding uniform matroid.
Consider an example.

Example 1. Let r= 3 and m= 3. For predefined m select
as field generator the polynomial p(x)=1+x+x3 over GF(2)

and for code generator the polynomial g(x)=1+3x+3x3
over GF3(23). The results of multiplication modulo p(x)
over decimal representation of the elements of GF3(23)
are presented in Table 2. It’s not hard to observe that
Table 2 is a Latin square.

Remind that the decimal numbers in Table 2 represent the
rest from division mod p(x), i.e. 0 is 0, 1 is 1, 2 is x, 3 is
x+1, 4 is x2, etc., 7 is x2+x+1. Also, the additive operations
on the binary representation of the corresponding decimal
numbers are performed as bit-by-bit (bit-wise) XOR.

A few matroids were found in the field GF3(23) by a
specially elaborated program. Among the found matroids
was selected the uniform matroid that is represented by
the following matrix:
















=

264264
511215
527747

A
.

Matrix A is a constructive basis to design the matroid
code encoder (or M-coder) over GF3(23).

The functioning of M-coder is given by
















>=<⋅=

264264
511215
527747

,, 321 xxxAxv

or
















=++
=++
=++
=++

=++
=++

.255
,62
,47
,227
,64
,457

6321

5321

4321

3321

2321

1321

vxxx
vxxx
vxxx
vxxx

vxxx
vxxx

 (4)

Figure 1 shows the scheme of the corresponding M-coder.
Edges in Figure 1 are marked by multiplier; ⊕ is a symbol
of the specified add operation. So components x1,x2 and x3
of the source code x are multiplied by the corresponding
factors (multiplier) and then are summed modulo p(z); on
the exit of M-coder are the components of vector v.

All the operations in Figure 1 are performed
asynchronously. A look-up table based multiplier circuit
can be used to make a (polynomial) multiplication of a by
b over GF3(23) [6]. But in the case of one of the fixed
inputs is more preferable to use a scheme of the constant
multiplier. The expected gain is the drastically reduction
of the hardware complexity.

Table 2

Multiplication mod (1+x+x3) over GF(23)

× 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 3 1 7 5
3 0 3 6 5 7 4 1 2
4 0 4 3 7 6 2 5 1
5 0 5 1 4 2 7 3 6
6 0 6 7 1 5 3 2 4
7 0 7 5 2 1 6 4 3

Table I

Restorations of the original vector of the matroid
code over GF(2)

Distorted symbol Equations of restorations

v1 x2←v2 and x1← x2+ v3

v2 x1←v1 and x2← x1+ v3

v3 x1←v1 and x2← v2

III. XOR-BASIS CONSTANT MULTIPLIER
IMPLEMENTATION

A parallel architecture of the multiplier can be derived
from the standard, i.e. “school column”, multiplication. In
this case the total number of gates for the bit parallel
multiplier is m2 AND gates and m(n-1) XOR gates [7].

A technique to implement the constant multiplier, only in
the basis XOR gates, can be proposed. Consider an
example.

Example 2: multiplication x by a constant c over GF (23)
with p(x)= 1+x+x3, where c=2, .., 7. Let x is multiplied by
4. Binary format of polynomial x is <x2, x1, x0>. If x=1
then the result is 1⋅4=4. This transformation can be
represented by a diagram, shown in Figure 2, a. In the
same way, it can be constructed a diagram for
multiplication 2⋅4 (see Figure 2, b). But in this case the
arrow will indicate to an inexistent position x3. This
inadmissible “situation” must be changed taking into
account the vector-corrector for x3, i.e. x3= 1+x from
equality p(x)=0. So the “ right” diagram for multiplication
2⋅4 will be such as is shown in Figure 2, c.

Multiplication 3⋅4, shown in Figure 2,d, will be obtained
by combining diagrams a) and c) of the Figure 2. In
Figure 2, d is shown a correct diagram for multiplication
4⋅4; it was taken into account the vector-corrector
x4=x+x2. Two edges will be coincide under synthesizing
diagram for multiplication 5⋅4 from diagrams a) and e).

The coinciding edges will be replaced by an XOR
operation (see ⊕ in Figure 2, f). Finally, by combination
of diagrams for values of x from 1 to 7 results the
diagram, shown in Figure 3, c.

A matrix can represent the constant multiplier structure.
Let T= [tij] be a matrix m×m, where



 →

=
otherwise.0,

;edgeanistheref,1 jii
tij

Diagram of multiplication x⋅ 4 has a following matrix:

.
110
011
100
















=T

By introducing matrix T an algorithm for constant
multiplier designing is derived (see Figure 3).

As a result of the ConstantMutiplier algorithm
processing will generate the matrix T that “ reflects” the
constant multiplier structure in the XOR-gates basis.

Resulted circuits constant multipliers for GF (23) with
p(x)= 1+x+x3 are presented in Figure 4. It’s easy to verify
that all circuits given in Figure 4 are in accordance with
the corresponding multiplication presented in decimal
format in the Table 2.

So, to implement the multipliers coder, shown in Figure 1,
by bit parallel architecture will be needed 18⋅(32+3(6-1))=
432 equivalent gates and by constant multipliers shown in
Figure 4, will be need 27 equivalent gates.

6

Figure 1. Block diagram of M-coder with
g(x)=1+3x+3x3 over GF3(23) and p(x)=1+x+x3 over
GF(2)

x1 x2 x3

4

7

5 ⊕ v1

4 ⊕ v2

2

7

2 ⊕ v3

4

7

 ⊕ v4

6

2

 ⊕ v5

2

5

5 ⊕ v6

x0
x1
x2

x0
x1
x2

a) 1⋅ 4

x0
x1
x2

x0
x1
x2

d) 3⋅ 4

Figure 2. Step by step designing of the diagram for
multiplication x⋅ 4

x0
x1
x2

b) Attempt to multiply 1⋅4

x0
x1
x2

x3

x0
x1
x2

x0
x1
x2

c) 2⋅ 4

x0
x1
x2

x0
x1
x2

e) 4 ⋅ 4

⊕

x0
x1
x2

x0
x1
x2

f) 5⋅ 4

Moreover, it can be surprisingly discovered that a
universal multiplier implemented by constant multipliers
has a more efficient structure (from the hardware
expenditure point of view) in comparison with the known
ones [7].

IV. M-CODE DECODING
As was outlined above the matroid codes are qualitatively
different from other ECC types. Decoding “embraces”
two process: recognition of erroneous combination of
symbols in the received vector v and the choice of the

appropriate subsystem of linear equations to restore the
original transmited vector x.

There are ∑
=








r

i r
i

1 2
 combinations of possible errors that

can be recognised by decoder. So in the Example 1 can be

6
6
1

=






 single errors, 15
6
2

=






 double errors and

20
6
3

=






 triple errors.

To solve the recognition task complexity it is proposed a
serial-parallel decoding procedure. This procedure is
based on hierarchy solutions representations by Boolean
lattice. Such representation allows to regulate the
subsystem equations choice and decrease (to minimum)
the number of recognition steps.

















621

521

421

vvv
vvv
vvv

















652

642

542

vvv
vvv
vvv

−−> v2

 








654

321
vvv
vvv

















632

532

432

vvv
vvv
vvv

















653

643

543

vvv
vvv
vvv

−−> v3

















631

531

431

vvv
vvv
vvv

















651

641

541

vvv
vvv
vvv

−−> v1

İn Figure 5 is shown the serial-parallel decoding diagram
for Example 1. Decoding procedure begin with searching
the solution of two subsystem, symbolically represented
by its free members: [v1, v2, v3] and [v4, v5, v6]. İf all
subsystems fail, i.e. the errors occurs (see continous edge
in Figure 5) then other subsystems are verified.
Verification is made by comparing the obtained results.

Searching the subsystem’s solution is an asyncronious
procedure. For example, choose a subsystem from the set
of second range of the Figure 5 diagram; let be the set

















621

521

421

vvv
vvv
vvv

. (5)

Set (5) contains a common two linear equations,
symbolically marked by v1 and v2. From this two
equations derived, for example, x1 and x2 that are common
for all three subsystems of (5). That is fine property
allowing minimizing the number of calculus. So, from (4)
follows: x1=2v1+v2+5x3 and x2=3v1+5v2+4x3. Substitute
the corresponding variables in the third equation of
subsystems (5); results are:

Figure 5. Diagram of serial-parallel M-code decoding

⊕
x0
x1
x2

x0
x1
x2

a) x ← x⋅2

⊕
⊕

⊕
⊕

x0
x1
x2

x0
x1
x2

b) x ← x⋅3

⊕
⊕

x0
x1
x2

x0
x1
x2

c) x ← x⋅4

⊕ x0
x1
x2

x0
x1
x2

d) x ← x⋅5

⊕ ⊕
⊕

x0
x1
x2

x0
x1
x2

e) x ← x⋅6

⊕

⊕

⊕ x0
x1
x2

x0
x1
x2

f) x ← x⋅7

Figure 4. Circuits of constant multipliers x by c over
GF(23) with p(x)=1+x+x3, where x=<x2, x1, x0> and

c∈{2,… ,7}.

ConstantMultiplier (C, p(x))
1 for i← m to 2(m-1) do
2 Make vector-correctors xi {x=<x1,… , xm>}
3 for i← 1 to m do
4 for j← 1 to m do
5 aij ← 0 {initialize matrix T=[tij]m×m}
6 t1← t1⊕ C {bit-wise XOR first line a1 with

 constant C : C=<c1, … , cm>}
7 for i←2 to m do
8 ShiftRight(C)
9 D← C {copy C in D; D= <d1,… ,d2m-1>}
10 if Degree(D)> m then
11 for j←m+1 to 2m-1 do
12 if dj= 1 then D← D⊕ x j-1
13 ti← ti ⊕ D

Figure 3. The algorithm of the constant multiplier
structure generation.

7(2v1+v2+5x3)+(3v1+5v2+4x3)+4x3=v4;
2(2v1+v2+5x3)+(3v1+5v2+4x3)+6x3=v5;
5(2v1+v2+5x3)+5(3v1+5v2+4x3)+6x3=v6,

from what result:

x3= (1/6)[7(2v1+v2)+(3v1+5v2)+v4];
x3=(1/3)[2(2v1+v2)+(3v1+5v2)+v5];
x3=(1/7)[5(2v1+v2)+5(3v1+5v2)+v6].

In accordance with the proprieties of Galois field divide
operation from equations above can be substituted by
multiply on reverse (opposite) element, i.e. a⋅a-1=1. Thus,
the diagram, shown in Figure 6, gives solution of a
subsystem.

From diagram in Figure 5 results that single errors are
most difficult to detect (see interrupted edges).

V. BURST ERRORS CORRECTION

By definition burst error is a sequence of erroneous and
correct symbols “embraced” between two erroneous
symbols. The main characteristic of the burst error is the
length l (a variable value) and the distance between burst
errors that should not be less then l.

For matroid code two cases can be analysed: l≤ r and l>r.
If l≤ r then the standard (i.e. proposed) technique is
applied. In the case l>r the technique of interleaving is

proposed to apply.

Let w=(v1,… ,vk) is a packet of vectors, where k=l/r, ⋅
is a nearest upper integer number. Interleaving of the
vectors packet w consists in redistribution of the vector
components vij, where vij∈vi , vi∈w, rjki 2,1,,1 == .

The easiest way to make an interleaving is to place the
vectors’ components with the same index j one after
another. An example to explain this: let l= 7 and r= 2.
Then k= 7/2= 4. In Figure 7 is shown the code words vi
(i=1,… ,4) and the packet w with redistributed components
of codewords; length of packet w= k⋅2r= 16.

The scheme of the interleaving on the M-encoder enter of
and the deinterleaving scheme on enter of M-decoder
does not influence on the coding-decoding algorithm.
Therefore burst error can be analysed as a particular case
of e-uple errors, where e∈{1, 2, ... r}. Herewith is
admitable one burst error of length l≤w/2 on one packet
of vectors!

VI. CONCLUSION

Efficient schemes of the matroid code encoding/decoding
are proposed and analysed in this paper. Encoding and
decoding are performed asynchronously in real time.

By interleaving symbols in the transmitted data it can be
achieved a better efficiency at the same parameters
(features) of the matroid code.

REFERENCES
1. S.H. Reiger, Codes for correction of “clustered”

errors, IRE Transactions on Information Theory, No.
6, pp.16-21, 1960.

2. V.Borshevich, W.Oleinik, A new approach to
information coding and protection based on the
theory of matroids, Computer Science Journal of
Moldova, Vol. 2, No. 1, pp.113-116, 1994.

3. H. Whitney, On the abstract proprieties of linear
dependence, American Journal of Mathematics, Vol.
57, pp. 509-533, 1935.

4. M. Aigner, Combinatorial Theory, Springer-Verlag,
Berlin, 1979.

5. G.C.Bodean, The matroid error correcting codes:
conception and construction, Proceedings of the 8th
International Conference on Optimisation of
Electrical and Electronic Equipments (OPTIM 2002),
Vol.3, May 16-17, pp.729-732, 2002.

6. M.A.Hasan, Look-up table based large finite field
multiplication in memory constrained cryptosystems,
IEEE Transactions on Computers, Vol. 49, No. 7,
pp.749-758, 2000.

7. H.Wu, M.A.Hassan, I.F. Blake, S.Gao, Finite field
multiplier using redundant representation, IEEE
Transactions on Computers, Vol. 51, No. 11, pp.
1306-1316, 2002.









⊕ 5

4
⊕

x1

x2

x3
















 5

3

2

5

5

5

2

4

5

⊕
7

v1

v2

v4

v5

v6

⊕

⊕

⊕

3 ⊕

x1

x2

x3

6 ⊕

4
⊕

⊕ 5

4
⊕

x1

x2

x3

Figure 6. Diagram of the block M-decoder

w:

v2:
v4: v3:

v1:

Figure 7. Codewords vi and packet of vectors w resulted
from interleaving of vi, i= 1,… ,4.

