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ABSTRACT 

Encoder and decoder algorithm of the matroid burst 
errors correcting code is defined. Constant 
multiplications is considered, and are shown the 
circuits implemented in the XOR-basis that drastically 
reduces the encoder/decoder complexity. The features 
of the matroid code encoding/decoding are analysed.  
 

I. INTRODUCTION 
It is known [1] that the upper bound of error correcting 
capabilities of the burst errors correcting code block is 
equal (n-k)/2, where n is the codeword length and k is the 
number of information (original) symbols in the 
codeword. Recently in [2] has been proposed a new class 
of errors correcting code (ECC), named matroid ECC, 
whose efficiency is impressive and is equal to k. But 
unlike the classical encoding/decoding technology the 
matroid codes (or M-code) don’t perform a correction in 
the sense of this word. In essence matroid coding 
performs a restoration of the transmitted information, i.e. 
data.  
 
Take an example. Begin from the notion “matroid” that 
has been proposed by Hassler Whitney [3]. H.Whitney 
used this notion to generalize the property of linear 
independence in vector space. Code words of ECC also 
can be interpreted as the vector’s coordinates. A restricted 
number of vectors that are linear independent, i.e. form a 
basis in the given vector spaces, can be found. For 
example, in the vector space of rank 2 over Galois field 
GF(2) can be distinguished the following basis: 
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Columns of the matrix B in (1) are the coordinates of 
vectors of the length r, r= 2. 
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contains a so-called collection of sub matrix B from (1). 
It’s said that matrix A represents the matroid M (or 
matroid M is represented by A) and this is denoted by 
M[A]. 
Moreover, by definition the matroid of matrix (2) is a 
uniform matroid [4].  
 
Matrix A can be used to generate the code words (vectors) 
of M-code: 
 

v= x⋅A,    (3) 
 

where x= <x1,… ,xr> is a vector of original information 
symbols; v=<v1, … , vn> is an output (transmitted) vector. 
 
The right side of (3) represents a system of linear 
equations with additive and multiplicative operations over 
field GF(2); such subsystem of rank r= 2 represented by 
one of the matrix (1) is a system of linear independent 
equations. 
 
The last remark has a very substantial significance!  
Coding is performed to correct the erroneous symbols. 
And from any of linear independent subsystems of A 
always can be restored the original symbols of x. in 
particular, the matroid M[A], represented by matrix (2), is 
“capable” to correct one error. 
 
So from (3) results: 
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






110
101 =<x1, x2, x1+ x2>, 

 
where x1→ v1, x2→ v2 and x1+x2→ v1. 
 
If any symbol of v was distorted in the transmission time, 
then the other remaining two symbols of v will be “help” 
to restore the failed components of the original vector x. 
There are three cases (see Table 1) of restoration. 
 
Certainly that given example is very trivial to imagine the 
full “beauty” of restoration.  



 
The cardinality of matrix A is insufficient to increase the 
correction capability (efficiency) of the analysed M-code! 
That is why it’s needed to pass to the vector spaces of a 
greater dimension. On such a transition inevitably appears 
the necessity to extend the basis, i.e. to pass to an 
extended Galois field GFr(2m) of degree of r and 
characteristics 2m. Degree m defines the number of bits 
(binarity) per codeword symbol. 
 
Paper [5] introduces to theoretical fundamentals of the 
matroid code construction. In this work will be analysed 
the particularities of M-code encoding and decoding. 
 

II. ENCODER OF THE MATROID CODE 
Function of the error-correcting matroid code is 
determined by transformation (3): on the enter is the 
source codeword x of length r with m-binary symbols; on 
the exit is the codeword v with the twice length, i.e. equal 
to 2r, with also m-binary symbols; (en)coder performs the  
matrix multiplication of x on A over field GFr(2m), where 
matrix A represents a corresponding uniform matroid. 
Consider an example. 
 
Example 1.  Let r= 3 and m= 3. For predefined m select 
as field generator the polynomial p(x)=1+x+x3 over GF(2) 

and for code generator the polynomial g(x)=1+3x+3x3 
over GF3(23). The results of multiplication modulo p(x) 
over decimal representation of the elements of  GF3(23) 
are presented in Table 2. It’s not hard to observe that 
Table 2 is a Latin square.  
 
Remind that the decimal numbers in Table 2 represent the 
rest from division mod p(x), i.e. 0 is 0, 1 is 1, 2 is x, 3 is 
x+1, 4 is x2, etc., 7 is x2+x+1. Also, the additive operations 
on the binary representation of the corresponding decimal 
numbers are performed as bit-by-bit (bit-wise) XOR. 
 
A few matroids were found in the field GF3(23) by a 
specially elaborated program. Among the found matroids 
was selected the uniform matroid that is represented by 
the following matrix: 
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Matrix A is a constructive basis to design the matroid 
code encoder (or M-coder) over GF3(23). 
 
The functioning of M-coder is given by 
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Figure 1 shows the scheme of the corresponding M-coder. 
Edges in Figure 1 are marked by multiplier; ⊕ is a symbol 
of the specified add operation. So components x1,x2 and x3 
of the source code x are multiplied by the corresponding 
factors (multiplier) and then are summed modulo p(z); on 
the exit of M-coder are the components of vector v. 
 
All the operations in Figure 1 are performed 
asynchronously. A look-up table based multiplier circuit 
can be used to make a (polynomial) multiplication of a by 
b over GF3(23) [6]. But in the case of one of the fixed 
inputs is more preferable to use a scheme of the constant 
multiplier. The expected gain is the drastically reduction 
of the hardware complexity. 
 

Table 2 
 

Multiplication mod (1+x+x3) over GF(23) 
 

× 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 
2 0 2 4 6 3 1 7 5 
3 0 3 6 5 7 4 1 2 
4 0 4 3 7 6 2 5 1 
5 0 5 1 4 2 7 3 6 
6 0 6 7 1 5 3 2 4 
7 0 7 5 2 1 6 4 3  

 

Table I 

Restorations of the original vector of the matroid 
code over GF(2) 

  
Distorted symbol Equations of restorations 

v1 x2←v2 and x1← x2+ v3 

v2 x1←v1 and x2← x1+ v3 

v3 x1←v1 and x2← v2 

 



III. XOR-BASIS CONSTANT MULTIPLIER 
IMPLEMENTATION 

A parallel architecture of the multiplier can be derived 
from the standard, i.e. “school column”, multiplication. In 
this case the total number of gates for the bit parallel 
multiplier is m2 AND gates and m(n-1) XOR gates [7]. 
 
A technique to implement the constant multiplier, only in 
the basis XOR gates, can be proposed. Consider an 
example. 
 
Example 2: multiplication x by a constant c over GF (23) 
with p(x)= 1+x+x3, where c=2, .., 7. Let x is multiplied by 
4. Binary format of polynomial x is <x2, x1, x0>.  If x=1 
then the result is 1⋅4=4. This transformation can be 
represented by a diagram, shown in Figure 2, a. In the 
same way, it can be constructed a diagram for 
multiplication 2⋅4 (see Figure 2, b). But in this case the 
arrow will indicate to an inexistent position x3. This 
inadmissible “situation” must be changed taking into 
account the vector-corrector for x3, i.e. x3= 1+x from 
equality p(x)=0. So the “ right” diagram for multiplication 
2⋅4 will be such as is shown in Figure 2, c. 
 
Multiplication 3⋅4, shown in Figure 2,d, will be obtained 
by combining diagrams a) and c) of the Figure 2. In 
Figure 2, d is shown a correct diagram for multiplication 
4⋅4; it was taken into account the vector-corrector 
x4=x+x2. Two edges will be coincide under synthesizing 
diagram for multiplication 5⋅4 from diagrams a) and e). 

The coinciding edges will be replaced by an XOR 
operation (see ⊕ in Figure 2, f). Finally, by combination 
of diagrams for values of x from 1 to 7 results the 
diagram, shown in Figure 3, c. 
 
A matrix can represent the constant multiplier structure. 
Let T= [tij] be a matrix m×m, where 
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By introducing matrix T an algorithm for constant 
multiplier designing is derived (see Figure 3).   
 
As a result of the ConstantMutiplier algorithm 
processing will generate the matrix T that “ reflects” the 
constant multiplier structure in the XOR-gates basis. 
 
Resulted circuits constant multipliers for GF (23) with 
p(x)= 1+x+x3 are presented in Figure 4. It’s easy to verify 
that all circuits given in Figure 4 are in accordance with 
the corresponding multiplication presented in decimal 
format in the Table 2. 
 
So, to implement the multipliers coder, shown in Figure 1, 
by bit parallel architecture will be needed 18⋅(32+3(6-1))= 
432 equivalent gates and by constant multipliers shown in 
Figure 4, will be need 27 equivalent gates. 
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Figure 1. Block diagram of M-coder with 
g(x)=1+3x+3x3 over GF3(23) and p(x)=1+x+x3 over 
GF(2) 

x1 x2 x3 

4 

7 

5 ⊕ v1 

4 ⊕ v2 

2 

7 

2 ⊕ v3 

4 

7 

 ⊕ v4 

6 

2 

 ⊕ v5 

2 

5 

5 ⊕ v6 

x0 
x1 
x2 

x0 
x1 
x2 

a) 1⋅ 4 

x0 
x1 
x2 

x0 
x1 
x2 

d) 3⋅ 4 

Figure 2. Step by step designing of the diagram for 
multiplication x⋅ 4 
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Moreover, it can be surprisingly discovered that a 
universal multiplier implemented by constant multipliers 
has a more efficient structure (from the hardware 
expenditure point of view) in comparison with the known 
ones [7]. 
 

IV. M-CODE DECODING 
As was outlined above the matroid codes are qualitatively 
different from other ECC types. Decoding “embraces” 
two process: recognition of erroneous combination of 
symbols in the received vector v and the choice of the 

appropriate subsystem of linear equations to restore the 
original transmited vector x. 
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To solve the recognition task complexity it is proposed a 
serial-parallel decoding procedure. This procedure is 
based on hierarchy solutions representations by Boolean 
lattice. Such representation allows to regulate the 
subsystem equations choice and decrease (to minimum) 
the number of recognition steps. 
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İn Figure 5 is shown the serial-parallel decoding diagram 
for Example 1. Decoding procedure begin with searching 
the solution of two subsystem, symbolically represented 
by its free members: [v1, v2, v3] and [v4, v5, v6]. İf all 
subsystems fail, i.e. the errors occurs (see continous edge 
in Figure 5) then other subsystems are verified. 
Verification is made by comparing the obtained results. 
 
Searching the subsystem’s solution is an asyncronious 
procedure. For example, choose a subsystem from the set 
of second range of the Figure 5 diagram; let be the set  
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Set (5) contains a common two linear equations, 
symbolically marked by v1 and v2. From this two 
equations derived, for example, x1 and x2 that are common 
for all three subsystems of (5). That is fine property 
allowing minimizing the number of calculus. So, from (4) 
follows: x1=2v1+v2+5x3 and x2=3v1+5v2+4x3. Substitute 
the corresponding variables in the third equation of 
subsystems (5); results are: 

Figure 5. Diagram of serial-parallel M-code decoding 
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Figure 4. Circuits of constant multipliers x by c over 
GF(23) with p(x)=1+x+x3, where x=<x2, x1, x0> and 

c∈{2,… ,7}. 

ConstantMultiplier (C, p(x)) 
1 for i← m to 2(m-1) do 
2      Make vector-correctors xi {x=<x1,… , xm>} 
3 for i← 1 to m do 
4       for j← 1 to m do 
5   aij ← 0 {initialize matrix T=[tij]m×m} 
6 t1← t1⊕ C  {bit-wise XOR first line a1 with  

 constant C :  C=<c1, … , cm>} 
7 for i←2 to m do 
8      ShiftRight(C) 
9      D← C {copy C in D; D= <d1,… ,d2m-1>} 
10      if  Degree(D)> m then 
11   for j←m+1 to 2m-1 do 
12        if dj= 1 then D← D⊕ x j-1 
13       ti← ti ⊕ D 

 
 
 
Figure 3. The algorithm of the constant multiplier 
structure generation. 



7(2v1+v2+5x3)+( 3v1+5v2+4x3)+4x3=v4; 
2(2v1+v2+5x3)+( 3v1+5v2+4x3)+6x3=v5; 
5(2v1+v2+5x3)+5( 3v1+5v2+4x3)+6x3=v6, 

 
from what result: 
 

x3= (1/6)[7(2v1+v2)+( 3v1+5v2)+v4]; 
x3=(1/3)[2(2v1+v2)+( 3v1+5v2)+v5]; 
x3=(1/7)[5(2v1+v2)+5( 3v1+5v2)+v6]. 

 
In accordance with the proprieties of Galois field divide 
operation from equations above can be substituted by 
multiply on reverse (opposite) element, i.e. a⋅a-1=1. Thus, 
the diagram, shown in Figure 6, gives solution of a 
subsystem. 
 
From diagram in Figure 5 results that single errors are 
most difficult to detect (see interrupted edges). 

 
V. BURST ERRORS CORRECTION 

By definition burst error is a sequence of erroneous and 
correct symbols “embraced” between two erroneous 
symbols. The main characteristic of the burst error is the 
length l (a variable value) and the distance between burst 
errors that should not be less then l. 
 
For matroid code two cases can be analysed:  l≤ r and l>r. 
If l≤ r then the standard (i.e. proposed) technique is 
applied. In the case l>r the technique of interleaving is 

proposed to apply. 
 
Let w=(v1,… ,vk) is a packet of vectors, where k=l/r, ⋅ 
is a nearest upper integer number. Interleaving of the 
vectors packet w consists in redistribution of the vector 
components vij, where vij∈vi , vi∈w, rjki 2,1,,1 == . 
 
The easiest way to make an interleaving is to place the 
vectors’  components with the same index j one after 
another. An example to explain this: let l= 7 and r= 2. 
Then k= 7/2= 4. In Figure 7 is shown the code words vi 
(i=1,… ,4) and the packet w with redistributed components 
of codewords; length of packet w= k⋅2r= 16. 
 
The scheme of the interleaving on the M-encoder enter of 
and the deinterleaving scheme on enter of M-decoder 
does not influence on the coding-decoding algorithm. 
Therefore burst error can be analysed as a particular case 
of e-uple errors, where e∈{1, 2, ... r}. Herewith is 
admitable one burst error of length l≤w/2 on one packet 
of vectors! 

 
VI.  CONCLUSION 

Efficient schemes of the matroid code encoding/decoding 
are proposed and analysed in this paper. Encoding and 
decoding are performed asynchronously in real time. 
 
By interleaving symbols in the transmitted data it can be 
achieved a better efficiency at the same parameters 
(features) of the matroid code.  
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Figure 6. Diagram of the block M-decoder 
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Figure 7. Codewords vi and packet of vectors w resulted 
from interleaving of vi, i= 1,… ,4. 


