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ABSTRACT 
 
We have previously introduced post-beamforming 
second order Volterra filter (SOVF) for decomposing 
the pulse echo ultrasonic radio-frequency (RF) signal 
into its linear and quadratic components. Using 
singular value decomposition (SVD), an optimal 
minimum-norm least squares algorithm for deriving 
the coefficients of the linear and quadratic kernels of 
the SOVF was developed and verified. However, the 
agent specificity of the standard SVD-based quadratic 
kernel is sometimes compromised by sensitivity to 
nonlinear echoes from tissue. In this paper, we present 
an adaptive second-order Volterra filter (ASOVF) 
designed to obtain the optimum filter coefficients 
minimizing the cost function to produce images with 
high sensitivity to nonlinear oscillations (20 - 30 dB 
below the fundamental) from microbubble ultrasound 
contrast agents (UCA) while maintaining high levels of 
noise rejection. The least-squares approach of a 
second-order Volterra model and its adaptive filtering 
algorithm based on recursive least-squares are 
introduced. 
 

I. INTRODUCTION 
 
Microbubble ultrasound contrast agents (UCA) are being 
investigated for use in clinical imaging applications for 
tissue function and for targeted therapeutic applications. 
The objective is to detect minute concentrations of UCA 
in the microvasculature during ultrasonic exams thus 
providing a view of the perfusion in the tissue. This 
functional form of ultrasonic imaging is seen an important 
component for the continued use of ultrasound as a 
medical imaging modality. For example, many tumors 
without distinguishing characteristics on conventional 
ultrasound have characteristic blood perfusion patterns 
that allow for easy detection if a perfusion sensitive 
imaging is available. 
 
Interaction between microbubbles UCAs and acoustic 
wave result in nonlinear harmonic echo generation. This 

phenomenon can be exploited to enhance the echoes from 
the microbubbles and, therefore, reject fundamental 
components resulting largely from tissue. Imaging 
techniques based on nonlinear oscillations have been 
designed for separating and enhancing nonlinear UCA 
echoes from a specified region of interest within the 
imaging field, including second harmonic (SH) imaging 
and pulse inversion (PI) Doppler imaging [2]. The SH 
imaging employs a fundamental frequency transmit pulse 
and produces images from the second harmonic 
component of received echoes by using a second 
harmonic bandpass filter (BPF) to remove the 
fundamental frequency. In order to increase UCA 
detection sensitivity in the limited transducer bandwidth 
condition, spectral overlap between fundamental and 
second harmonic parts need to be minimized by 
transmitting narrow-band pulses resulting in an inherent 
tradeoff between contrast and spatial resolution. In PI 
imaging a sequence of two inverted acoustic pulses with 
appropriate delay is transmitted into tissue. Images are 
produced by summing the corresponding two 
backscattered signals. In the absence of tissue motion, the 
resulting sum can be shown to contain only even 
harmonics of the nonlinear echoes. The PI imaging 
overcomes the tradeoff between contrast and spatial 
resolution because it utilizes the entire bandwidth of the 
backscattered signals. As a result, superior spatial 
resolution can be achieved when compared with SH 
imaging. However, the subtraction process results in 
significant reduction of signal to noise as the harmonics 
are typically 20  - 30 dB or more below the (cancelled) 
fundamental component. 
 
The SOVF-based quadratic kernels provide high 
sensitivity to harmonic echoes comparable to PI with a 
significant increase in dynamic range due to inherent 
noise rejection of quadratic filtering [3].   An algorithm 
for deriving the coefficients of the kernel using singular 
values decomposition (SVD) of a linear and quadratic 
prediction data matrix was proposed and experimentally 
validated in [4].  Imaging results and comparisons with 
SH and PI images have shown that quadratic imaging is 

mailto:akuntman@istanbul.edu.tr


superior to SH and compares favorably with PI without 
the need for multiple transmissions. However, due to 
reliance on linear and quadratic prediction, the quadratic 
kernel has sensitivity to the fundamental that limits its 
ability to detect UCA in the microvasculature. 
 
In this paper, we present an adaptive second-order 
Volterra filter (ASOVF) designed to obtain the optimum 
filter coefficients minimizing the cost function to produce 
images with high sensitivity to nonlinear oscillations (20 – 
30 dB below the fundamental) from microbubble 
ultrasound contrast agents (UCA) while maintaining high 
levels of noise rejection. The least-squares approach of a 
second-order Volterra model and its adaptive filtering 
algorithm based on recursive least-squares are introduced. 
 
The approach is demonstrated experimentally using 
images from in vivo kidney after bolus injection with 
UCA. Illustrative images of the kidney of a juvenile pig 
were obtained before and after infusion of contrast agent 
(SonoVue, Bracco, Geneva, Switzerland) at various 
concentrations. Imaging results of ASOVF data show a 
significant increase in harmonic sensitivity and reduction 
in noise levels. The imaging results given in this paper 
indicate that a signal processing approach to this clinical 
challenge is feasible. 
 
 

II. THEORY 
 
In this section, we present the basis of an adaptive second-
order Volterra filter (ASOVF) designed to. However, for 
the sake of continuity, we summarize the minimum-norm 
least-squares (MNLS) approach here (for full detail, 
please see [3-4]). 
 
A.   MNLS Estimation of SOVF Coefficient 
 
The algorithm in this section is based on [3-4], which 
have shown the validity of a SOVF as a model for pulse-
echo ultrasound data from tissue mimicking media. The 
response of a quadratically nonlinear system with memory 

, can be predicted by a second order Volterra 
model of m past values as follows: 
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where  and  are the linear and quadratic 
filter coefficients respectively. It is easy to see that (1) is a 
nonlinear equation in terms of the beamformed input data. 
However, it is a linear equation in terms of the unknown 

filter coefficients (i.e., linear and quadratic Volterra 
kernels) 

( )ihL ( kjhQ ,

( )ihL  and ( )kjhQ , . Hence, (1) can be 
rewritten in vector form: 
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where past data vector ( )nY  is defind at time n as: 
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and the filter coefficient vector H  is defined as: 
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Note that m is the system order, N is the total number of 
filter coefficients [3], which is equal to ( ) 232 mm +  
assuming symmetrical quadratic kernels (i.e., 

( ) ( )jkhkjh QQ ,, = ), and superscript T is the transpose 
of a vector or a matrix. Similarly, 
( ) ( ) ( )mnynyny +++ ˆ,...,3ˆ,2ˆ  can be represented in 

the form of (2) and expressed in a matrix form. A system 
of linear equations is formed in order to find filter 
coefficients as follows: 
 

GHF =                                                                    (3) 
 
where the vector F and the data matrix G are: 
 

( ) ( ) ( )[ ]TLnynynyF +++= ,...,2,1  
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where L is the number of linear equations (observations). 
Using a segment of the RF data, a system of linear 
equations are formed and solved for elements of the 
quadratic kernel. Details of the algorithm to determine the 
quadratic kernel that provide maximum contrast 
enhancement have been described in [3-4]. 
 
B.   Adaptive Second-order Volterra Filering 
 
In time domain adaptive filters, the new filter coefficients 

( )1+nhest  are updated using old filter coefficients 

( )nhest , and the estimation error , multiplied by 

the weighting vector 

( 1+ne )
( )1+nw , as follows: 
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where 
 

( ) ( ) ( ) ( )111 +−+=+ nYnhnyne T
est                     (5) 

 
that is, the difference between the true observed output (or 
response) at time  and the output "predicted" by the 
Volterra model. In general, the weighting vector 

1+n
( )nw  is 

determined so that  can converge to the unique 
optimum filter coefficients which minimize the quadratic 
cost function. A block diagram of a second-order Volterra 
filter to estimate an unknown quadratic nonlinear system 
is shown in Figure 1, in which the linear and quadratic 
filter coefficients are recursively updated. There are two 
well-known algorithms in digital signal processing which 
guarantee the convergence of the filter coefficients: the 
least-mean-squares (LMS) algorithm and the recursive 
least-square (RLS) algorithm [6-7]. 

( )nhest

 

 
Figure 1 Recursive estimation of an unknown physical system 
using a second-order Volterra filter, in which a quadratic cost 
function is minimized and the filter coefficients are recursively 
estimated using an adaptive filtering algorithm. 
 
In the LMS algorithm, which is an implementation of the 
stochastic gradient method, the weighting vector is 
determined by 
 

( ) ( )nYnw µ2=                                                         (6) 
 
where µ satisfies the convergence condition 
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λ
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and maxλ  is the largest eigenvalue of the matrix . If 
µ is large while satisfying the convergence condition, the 
convergence speed of the algorithm is fast, but with large 
variance (steady-state error). On the other hand, a small µ 
value reduces the variance, but with slow convergence 
speed. Therefore, in order to achieve fast convergence and 
small steady-state error, one might use a "gear shift" that 

selects relatively large µ initially, and then reduces µ to a 
small value after the error decreases below a certain level. 
Since the LMS algorithm can be easily implemented with 

TGG

( )NO  computational complexity, it has been widely 
used in various signal processing applications. However, 
the LMS algorithm suffers from slow convergence of the 
filter coefficients, especially when the input is correlated. 
In the RLS algorithm, which is an implementation of the 
stochastic Gauss-Newton method, the weighting vector is 
determined by 
 

( ) ( ) GGGnw T 1−
=                                                   (8) 

 
In fact, the RLS algorithm computes  at every 

instant of time by computing . Hence, the filter 
coefficients converge quite rapidly, but at the cost of 
heavy computational complexity, i.e., 

( )nhopt

( )nw

( )2NO . Thus, 
various fast RLS (FRLS) algorithms, which are 
computationally more efficient, have been developed. 
Since a second-order Volterra filter using the RLS 
algorithm is more complicated than a linear filter using 
the RLS algorithm and requires a large number of filter 
coefficients, the fast implementation of the RLS algorithm 
for a second-order Volterra filter is desirable in order to 
reduce the computational complexity, and is often 
necessary for real-time applications. However, in this 
paper, the RLS algorithm for a second-order Volterra 
filter is utilized, instead of the fast RLS algorithm, to 
obtain the optimum filter coefficients minimizing the cost 
function to produce images with high sensitivity to 
nonlinear oscillations (20 - 30 dB below the fundamental) 
from microbubble ultrasound contrast agents (UCA) while 
maintaining high levels of noise rejection. The details of 
the development of the algorithms are beyond the scope 
of this paper, but may be found in [6-7]. 
 

III. MATERIALS AND METHODS 
 
A.   Experimental setup 
 
We evaluated the algorithm with RF data acquired from 
experiments conducted in vivo on a juvenile pig. Bolus 
injections of SonoVueTM (Bracco Research SA, Geneva, 
Switzerland), an UCA consisting of sulphur hexafluoride 
gas bubbles coated by a flexible phospholipidic shell, 
were administered with two different concentrations (0.01 
mL/kg and 0.0025 mL/kg). 
 
Three- and four-cycle pulses at 1.56 MHz were 
transmitted using a convex array probe (CA430E) with 
mechanical indices (MIs) of 0.158 and 0.152, 
respectively, to scan a kidney. Technos MPX ultrasound 
system (ESAOTE S.p.A, Genova, Italy) was modified so 
that a pair of inverted pulses with the appropriate time 
delay was subsequently transmitted to produce images 



with the PI technique. In addition, in order to remove low 
frequency components due to tissue motion artifacts and 
retain harmonic frequency components from UCAs, RF 
data from PI imaging were filtered using the linear 
highpass filter with cutoff frequency 2.3 MHz. For each 
setup, three frames of RF data from the PI technique were 
collected with 10 s and 15 s delays after the injection of 
0.01 mL/kg and 0.0025 mL/kg UCAs, respectively. RF 
data were acquired with 16-bit resolution at 20-MHz 
sampling frequency without TGC compensation and 
saved for off-line processing. 
 
B.   Contrast measurements 
 
As a comparison of contrast enhancement between images 
from different techniques, we compute contrast-to-tissue 
ratio (CTR) from data in the RF domain before scan 
converted. CTRs of images can be calculated with echoes 
from two referenced regions: First, the contrast region 
inside the kidney (bottom-left part). Second, the tissue 
region outside the kidney (on the left hand side of the 
contrast region with the same depth). Both regions are 
composed of 21 connected A-lines with 7.5-mm axial 
extent. 
 

IV. RESULTS AND DISCUSSION 
 

 
Figure 2 Average spectra from the contrast (darker, 
black) and tissue (lighter, red) regions of the kidney: 
Standard B-mode, and PI. 
 
Figure 2 shows the average spectra of typical echoes from 
the contrast and tissue regions of the kidney described 
from the standard B-mode and PI data in Section 3. The 
average spectra are calculated by averaging windowed 
periodogram of every echo line in regions described in 
Section 3.2. The echoes from the UCA region exhibit 
broader bandwidth than those from tissue region 
 
Figure 3 shows images obtained using a standard B-mode 
image of the kidney after the injection of 0.01 mL/kg 
UCAs acquired using 3-cycle transmission, PI, second 
harmonic on PI data (SHPI), quadratic image from twice 
2D correlation of 38th singular mode of the B-mode data, 
and quadratic image from the ASOVF of the B-mode 
data. Due to differences in dynamic ranges, each image is 
displayed with its full dynamic range as can be seen from 
the dB-level scale bars. Due to low microbubble 
populations in the perfused tissue of the kidney (Standard 

B-mode image), echogenicity from contrast regions is 
slightly lower than that from surrounding tissue regions, 
which agrees with the CTR value (-2.12 dB) whereas the 
PI image provides CTR 14.36 dB, echogenicity of the 
contrast region from the PI image appears brighter than 
that from surrounding tissue regions. Please note that the 
CTR value for the PI image without SH filtering was only 
10.23 dB, i.e. there is a 4.13 dB gain due to the removal of 
tissue components introduced by motion. It is also worth 
noting that the SH image on the B-mode data suffers from 
significant loss in spatial resolution. The quadratic image 
from twice 2D correlation of 38th singular mode provides 
CTR 23.13 dB, which shows a contrast enhancement over 
both standard B-mode, PI and SHPI images. 
 
The quadratic image from the ASOVF of the B-mode data 
is obtained using the algorithm described in section 2 with 
the use of a 5.6-mm contrast A-line and a system order 
15, provides CTR 34.11 dB, which shows a contrast 
enhancement over the other four images. We can clearly 
see not only the kidney’s shape and boundary due to UCA 
echoes but also large vascular structures as it is seen in the 
PI, SHPI, quadratic from twice 2D correlation of 38th 
singular mode images too. Also we can see that the 
kidney’s shape and boundary due to UCA echoes are the 
clearest in the ASOVF image compared with the other 
four images due to the efficient removal of noise 
throughout the spectrum while maintaining quadratic data, 
even below the noise floor. 
 

 
Figure 3 Images of the: Standard B-mode image of the 
kidney at 10 s after the injection of 0.01 mL/kg, PI, SHPI, 
quadratic from twice 2D correlation of 38th singular mode 
of the B-mode data, and quadratic from the ASOVF of the 
B-mode data. 
 



Figure 4 shows the gray-level histograms produced from 
the standard B-mode, PI, SHPI, quadratic from twice 2D 
correlation of 38th singular mode of the B-mode data, and 
quadratic from the ASOVF of the B-mode data images. In 
each case, the histogram from the UCA region is plotted 
with light solid line (red), while the histogram from tissue 
is plotted with darker solid line (black). One can see the 
degree of overlap between the histograms is highest for 
the standard B-mode image, whereas it is the lowest for 
the ASOVF image. 
 
 

V. CONCLUSION 
 
We have proposed the new algorithm of post-
beamforming adaptive second order Volterra filter 
(ASOVF) for deriving the quadratic kernels which give 
the highest CTRs, efficiently remove noise throughout the 
spectrum, maintaining quadratic data, even below the 
noise floor, and extract quadratic components from UCA 
nonlinear echoes with single transmission. Compared with 
the PI image processed from the same RF data, the 
quadratic images show comparable performance in terms 
of both contrast and spatial resolution. The results shown 
in this paper indicate clearly that ASOVF imaging is far 
superior to either PI or quadratic imaging. In addition, 
compared to PI imaging, the Volterra filter approach does 
not require multiple transmissions for acquiring one 
image line. Therefore, this approach preserves the frame 
rate of the original B-mode system, an important 
advantage of ultrasound imaging over other medical 
imaging modalities. 
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Figure 4 Gray-level histograms produced from images 
shown in Figure 1. Histograms are produced from the 
contrast region (lighter, red) and the tissue region (darker, 
black). 
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