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Abstract

The paper deals with a variant of direct
interconnection network, Generalised Hyper Structure —
GHS. 4 GHS has a non-homogeneous orthogonal
topology in which dimension i is connected to an
interconnecting vector represented by an union of
elementary interconnection structures, EIS-s.
Constituent EIS-s are homogeneous topologies, for
example, tori, grids or completely connected networks.
Definition of the GHS-s is an attempt to specify a
consistent method to design interconnection structures
with variable interconnection spatial locality properties,
known criterion of the topological design for the
interconnection networks used in parallel systems.

Index Terms: Direct interconnection networks,
Parallel systems, Topology, Interconnection locality

1. THE HOMOGENOUS TOPOLOGIES

Most  implemented  Direct  Interconnection
Networks, DIN, have an orthogonal topologies [3].
Among them are generalised hypercubes, GHC, [2], or
alpha networks [1]. These structures interconnect N
nodes in r dimensions where N=m, m,.,-.. m;-...-m;. In
every dimension 7 there are m; nodes interconnected all
by all.

Definition 1.1: A GHC is a DIN in which every
node represented by an address written in a Mixed Radix
Number System, MRNS, X=(x, X,; ... Xisj X; Xp.y ... X}) 1S
comnected with the nodes addressed by X = (x,
XpopooXos X 0.p..X 1), Where | <i<y, 0<x;<mj-1 and x =x,.

If a GHC has a single dimension we obtain the
known Fully or Completely Connected Network, CCN,
in which the nodes (W=m) are tied all by all. Let us
notice that a GHC can be now understood as a DIN in

which the nodes of any dimension are linked by a mono-
dimensional Elementary Interconnection Structure, EIS,
of CCN type.

Other elementary interconnection structures can
define other generalised DIN. For example, if EIS is a
torus (T), we will obtain the generalised hypertorus,
GHT, and if EIS is a grid (G), we will obtain
generalised hypergrids, GHG. We will give the two
more definitions, we use later, based on the torus and
grid EIS-s.

Definition 1. 2; A GHT is a DIN in which every
node X represented by an address written in a MRNS is
connected with the nearest neighbour nodes addressed
by X=X g Xia X X 50), where 1sisy,
Xi= xlij modulo mi -

Definition 1. 3: A GHG is a DIN in which every
node X represented by an address written in a MRNS is
connected in a grid with the nodes addressed by
X=(x, X100 Xis X xi.5..-x1), where 1<isr; x=x; 41 |x,-;é0
and x;#m-1; x =x;+1 | x=0; x,=x;-1 ‘x,-=m,--1.

Resulted networks interconnect a number of nodes
by a number of links in a multidimensional structure, in
every dimension the nodes being connected by a
specified EIS. With these examples, we defined
orthogonal topologies with a constant EIS. That means
the EIS is the same for all dimensions and is constant in
every dimension. Let us call them homogenous
networks. Examples are GHC-s, GHT-s and GHG-s.

2. DEFINITION OF THE GENERALISED
HYPER STRUCTURES

If we vary the EIS, we will obtain non-homogenous
networks or what we named hybrid hypercubes [6] or
generalised hyper structures, GHS-s:
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Definition 2. 1: A GHS is an interconnection
network in which every node X represented by an
address written in a MRNS is connected in the
dimension i, [<i<r, with the nodes addressed by

ko .
U XY =(xlxr-l--~xl+lx'i Xip.Xy).
Jj=1
i oo
X' is substituted by a union, |J XY . Therefore,
J=1

ko
the union {J X v specifies that GHS is connected by a
J=1
vector of elementary interconnection structures -

interconnecting vector, which has r elements, UX Y A
Jj=1

1sisr. So, this interconnecting vector is defined, on the
one hand, by the number of dimensions, r, and, on the
other hand, by &; elementary interconnection structures
for which the dimension i is specified, X , j=1, 2, ..., k.
XY are homogenous networks, like those described in the
introduction, and must not be disjoint for a dimension.

In order to understand the Generalised Hyper
Structures we give two examples.

3. TWO EXAMPLES OF GHS

Example 3. 1: Let GHS with N=5-4 nodes using for
each dimension the EIS-s defined by the definitions 1.1
and, respective, 1.2,

The address of the node X represented in a MRNS
will be X=( x, x;), where x,e{01,23, 4} and
x,€{0,1,2,3}

In the first dimension the X node will be tied with
X! nodes in a torus, T, in accordance with the definition
1'2’ Xl:(xi’ xl)! Where X = /in'I /modulo 4

In the second dimension the X node will be tied
with X* nodes in a CCN pattern defined by the definition
1.1, X’=(x, x,), where 0, <4, x, =x,.

The interconnecting vector is {X°, X'3. Above GHS

is coded in accordance to the interconnecting vector by
{CCN, T} and is represented in the figure la.
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Figure 1. Two examples of GHS-s with N=m,xm;=5x4: {CCN, T} - (a) and
with N=-mzxm1=5x8: (TMUCCNMQ, To.}UG]q} = (b)

Example 3. 2: Let GHS with N=58 nodes. In the
first dimension, first four nodes will be connected in a
torus and last five in a grid (definition 1.3). In the
second dimension, first five nodes (all) will be
interconnected in a torus, and last four in a CCN.

The address of the node X represented in a MRNS
will be X=(x; x;), where x;6{0,1,234} and
x,;€{0,1,2,3,4,5,6,7}

In the first dimension the X node will be tied with
x'ox'? nodes, X' representing a torus, T, and y

representing a grid, G. Therefore, Ay =(x, x,), where
%1 J5121 [moao 4 %1€0,1,2,3}, and X**=(x, x, ), where
x,=x,2] lx,#3 and x,=7, x',=x,+1 |x,=3; x)=x)-
11 x,=7; x,€{3,4,5,6,7 ).

In the second dimension the X node will be tied
with X*’ (X nodes, X*/ representing a torus, T, and X%
representing a CCN pattern. On this dimension, patterns
are not disjoint, X*'=(x,’ x,), where x;= /x;-_/-I modulo 5
x2€{0,1,2,3,4}, and X**=(x, x,), where 1<x,' <4, x, =,
xe{1,2,3,4}.
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Above GHS is coded {TMUCCNM, T0+3UG3¢7}
corresponding to the interconnecting vector {X*' (X%,
X' Lx'?} and is represented in figure 1b.

4. INTERCONNECTION LOCALITY.
AS DESIGN CRITERION.
EVALUATION AND CONCLUSION

Locality is one of main criteria to design computers
[31, I51, [4], [9], [6]), [7]. What we tried by defining the
GHS was 1o specify a method to design interconnection
structures with variable interconnection spatial locality
properties. Comparing with the GHC-s, GHT-s or

-
o
e T e

oON & O X

GHG-s, the GHS-s appear as more flexible networks.
Our intention is to design networks fitted to the locality
requirements of different communication processes. In
general, these requirements are not constant and we
must be able to design interconnection structures with
variable locality characteristics. The GHS-s are a
possible way to obtain such interconnections especially
from the point of view of the neighbourhoods and the
functional average distances.

One of the synthetic measures of the
interconnection locality of a DIN is the functional
average distance. The functional average distance,
covering average message distance [2], number of link
visits or mean internode distance [9], is given by

- _|HN={2,\!
1|oN=(3) |

Figure 2. Functional average distances for structural (S), uniform (U) and exponential (E)
distributions for structures (1), (2) and (3)
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Figure 3, Functional average distances for structural (S), uniform (U) and exponential (E) distributions for
structures (4)-(10)

C_ i
i Zd x@(d), where &(d) is the message
pr

routing distribution at the distance d [9].

Taken, as examples, three EIS-s, Completely
Connected Network (CCN), Torus (T) and Grid (G), we
evaluated by the functional average distance all the
GHS-s for k=1 (example 3.1) with three dimensions and
N=10x10x10 nodes [8]. In the figures 2 and 3 the
Generalised Hyper Structures are: {CCN, CCN, CCN}
(1), {T, T, T} @), {G, G, G} (3), {CCN, CCN, T} (4),
{CCN, T, T} (5), {CCN, CCN, T} (6), {CCN, T, G}
(7), {CCN, G, G} (8), {T, T, G} (9), {T, G, G} (10). In
the. same figures the routing distributions are:

&d)=N4/(N-1) - structural (S), dd=p -
uniform (U), and &(d)=K-A" - exponential (E).

In the figures 2 and 3 we demonstrated that GHS-s,
filling the gaps between topologies (1), (2) and (3), are a
good candidate for a method of designing topologies
having the interconnection spatial locality as parameter,

at least measured by d. .
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