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Abstract 
 

This paper presents the design and implementation for 2-D 
discrete cosine transform (DCT) with the goal of achieving 
low area utilization and high-speed operation on FPGAs. 
The design is based on the row-column decomposition 
technique, which requires two successive 1-D DCT 
transforms and a transpose memory between them for 
storing and transposing the results of the first 1-D DCT. 
The proposed implementation of 2-D DCT is capable of 
compressing at least 70 images per second in 720x480 
resolution on Xilinx Spartan 3E and 30 images per second 
in 1920x1080 resolution on Xilinx Virtex 7 FPGA. 
Consequently, the proposed 2-D DCT design and 
implementation can be very useful in various image and 
video compressing applications. 
 

1. Introduction 
 

The discrete cosine transform (DCT) plays a key role in 
JPEG for still picture compression [1], ITU H.261 [2] for 
teleconferencing, and MPEG for multimedia applications [3]. 
For example, in JPEG baseline encoder, an input image is split 
into non-overlapping blocks of 8×8 pixels, the pixel values are 
level shifted from unsigned integer to signed integer, and then 2-
D DCT computation is performed on each block.  

Among the various architectures and algorithms proposed for 
the computation of 2-D DCT, a popular approach is the row-
column decomposition method [4-10]. Its popularity can be 
attributed to the following facts: (i) It is based on the 
separability property of 2-D DCT and enables the computation 
of 2-D DCT by using two successive 1-D DCT transforms. (ii) It 
requires a control logic with lower complexity due to its 
regularity and modularity. (iii) It reduces the computational 
complexity of 2-D DCT by a factor of four. For an 8x8 input 
matrix, 2-D DCT algorithm requires 4096 multiplication and 
4096 addition operations. The row-column decomposition 
method, on the other hand, only needs 1024 multiplication and 
1024 addition operations.  

In this study, the 2-D DCT architecture introduced by [4] for 
an ASIC implementation is adopted, and is modified for a low 
area implementation on FPGA. There are of course several 
reasons why [4] is chosen to be implemented on FPGA: (i) It 
exploits the row-column decomposition. Thus, using single 1-D 
DCT core in a time-shared manner is expected to result in low 
area utilization. (ii) It uses a shift-register based transpose buffer 
that saves block RAM resources. (iii) The control logic can be 
distributed among its components, which results in simpler finite 
state machines. 

The rest of the paper is organized as follows. Section 2 
presents details of the proposed 2-D DCT architecture. Section 3 
gives the implementation results and compares against other 
cores from the literature. Finally, Section 4 concludes the paper. 

 
2. 2-D DCTArchitecture 

 
The overview of the proposed FPGA implementation of 2-D 

DCT architecture is shown Fig. 1, which is inspired by [4] . 
With respect to Fig. 1, the main components include ping buffer, 
pong buffer, 1-D DCT, transpose buffer, and output buffer. It 
should be noted here that the modifications to [4]  include pong 
buffer operation, inclusion of a pipeline register and rounding 
logic in 1-D DCT, output buffer, and a stoppable pipeline. 
Common to these components are their input and output 
interfaces, which are similar to writing into or reading from a 
FIFO buffer and described as follows: 

- Input interface: A component consumes a new data word 
on writeData bus in the next rising edge of clock signal if 
writeEn is asserted while full is not asserted during the 
current clock period. Thus, the asserted full signal indicates 
that the component cannot currently accept a new data 
word.   
o writeData, input, 8-, 12-, or 96-bit  
o writeEn, input, 1-bit 
o full, output, 1-bit 

- Output interface: A component produces a new data word 
on readData bus in the next rising edge of clock signal if 
readEn is asserted while empty is not asserted during the 
current clock period. Note that if empty is not asserted, 
there is a valid data word available on readData bus; 
otherwise, component cannot provide a new data word in 
the current clock cycle. 
o readData, output, 12-, or 96-bit  
o readEn, input, 1-bit 
o empty, output, 1-bit 

As a result of their aforementioned input and output 
interfaces, four main components are seamlessly connected in 
Fig. 1 as follows:  

- readData (Output)ÆwriteData (Input): Data bus between 
producer and consumer components is established. 

- empty (Output)ÆinverterÆwriteEn (Input): Producer 
component can write into consumer component.   

- readEn (Input)inverterfull (Output): Consumer 
component can read from producer component.   

After the detailed description of input and output interfaces, 
how each of five components contributes to the computation of 
2-D DCT will be explained in the following sections.  

 
2.1. Ping Buffer 

 
Ping buffer is basically a 96-bit shift-register whose 

operation is controlled by a two-state {empty, full} finite state 
machine (FSM) as follows:   

- empty (serial-in): If writeEn is asserted, a new 12-bit word 
is   serially   shifted   into   ping   buffer.  Once  the  eighth  
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12-bit word is inserted into the buffer, FSM goes to the 
other state. As a result, ping buffer requires at least eight 
clock cycles to become full. In empty state, full and empty 
output signals are deasserted and asserted, respectively. 

- full (parallel-out): If readEn is asserted, 96-bit current state 
of ping buffer is shifted out and FSM goes to the other 
state. Thus, ping buffer becomes in empty state again. In 
full state, full and empty output signals are asserted and 
deasserted, respectively.  

Consequently, it takes a total of 64+8=72 clock cycles for an 
8x8 matrix of pixels, where 64 cycles are spent for loading all 
elements of 8x8 matrix into the buffer, and 8 cycles are needed 
for transferring 8x8 matrix row by row to pong buffer. 

 
2.2. Pong Buffer 

 
Pong buffer is simply a 96-bit register whose operation is 

managed by a four-state {oned_dct_empty, oned_dct_full, 
twod_dct_empty, twod_dct_full} finite state machine as follows:   

- oned_dct_empty (parallel-in): If writeEn is asserted, a new 
96-bit word (a row of eight pixels) is loaded and FSM goes 
to oned_dct_full state. MuxSel signal is not asserted so as 
to load from ping buffer. In this state, full and empty output 
signals are deasserted and asserted, respectively. 

- oned_dct_full (coefficient computation): A new 1-D DCT 
coefficient is computed based on the current state of pong 
buffer in every clock cycle. Since there are eight pixels per 
row, the machine stays here only for eight clock cycle. At 
the end of the eighth clock cycle, during which the last 
coefficient     for    a     row    is   being    computed,    it   
goes  to twod_dct_empty  state     if    the    eighth   row   is   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
being processed;  otherwise, it makes a transition to 
oned_dct_empty state. In this state, full and empty output 
signals are asserted and deasserted, respectively. 

- twod_dct_empty (parallel-in): This state is similar to 
oned_dct_empty state except that MuxSel signal is asserted 
in order to load from transpose buffer (a column of eight 1-
D DCT coefficients) instead of ping buffer.  

- twod_dct_full (coefficient computation): This state is 
similar to oned_dct_full state except that it goes to either 
oned_dct_empty state if the eighth column is being 
processed, or twod_dct_empty state at the end of the eighth 
clock cycle. 

With respect to the pong buffer operation, 64+8=72 clock 
cycles are required for the computation of 1-D and 2-D DCT 
coefficients. As a result, pong buffer completes the processing 
of 8x8 matrix of pixels in 144 clock cycles. Furthermore, ping 
and pong buffers together introduces (72+144)-8=208 clock 
cycles of latency. 
 
2.3. 1-D DCT  

 
According to [9], eight-point 1-D DCT can be computed 

based on the row-column decomposition technique as follows: 
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Fig. 1. Architecture of 2-D DCT hardware  
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where zi is the transformed coefficient, xi is the pixel data, a=C1, 
b=C2, c=C3, d=C4, e=C5, f=C6, g=C7, Ci=0,5cos(kπ/16), 
i=0,1,..7, and k=1,2,..7. Let X0 = x0+x7, X2 = x1+x6, X4 = x2+x5, 
X6 = x3+x4, X1 = x0-x7, X3 = x1-x6, X5 = x2-x5, and X7 = x3-x4.  

In order to calculate the coefficients by means of these 
equations, 1-D DCT architecture in Fig. 2 is designed. In Fig. 2, 
the topmost Add/Sub component is used to compute either 
X0=(x0+x7) when OddSel=0 or X1=(x0-x7) when OddSel=1, and 
so on. As a result, OddSel is asserted only if an odd-indexed 
coefficient {z1, z3, z5, z7} is calculated; Add/Sub components 
find out either {X0, X2, X4, X6} or {X1, X3, X5, X7} in parallel. 

After add/sub operations, four integer multiplication 
operations are performed in parallel for every coefficient. In Fig. 
2, w[39:0] denotes the set of weights used during a 
multiplication. For example, z2 = b*×X0 + f*×X2 � f*×X4 � 
b*×X6 and w[39:0] ={b*, f*, -f*, -b*}, where * is used to indicate 
10-bit 2’s complement representations of the related weight 
values. Even though it is not shown in Fig. 2, there is single 
8×40-bit look-up table where it is addressed by 3-bit index 
value of the coefficient being computed and its each 40-bit row 
stores four weights in 2’s complement representation per 
coefficient. 

After multiplication operations, there is 88-bit register whose 
operation is controlled by a two state {empty, full} FSM as 
follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

- empty: If writeEn is asserted, a new 88-bit word is loaded 
into register and FSM goes to the other state. In empty 
state, full signal is deasserted, and empty_transpose (empty 
signal for transpose buffer) and empty_outbuff (empty 
signal for output buffer) signals are asserted. 

- full: While either 1-D DCT or 2-D DCT coefficient is 
computed, if either readEn_transpose or readEn_outbuff is 
asserted, 88-bit current state of register is provided with 
either transpose buffer or output buffer, respectively. 
Furthermore, FSM stays in this state if writeEn is found to 
be asserted; otherwise, it goes to the other state. In this 
state, full signal is asserted only if readEn_transpose or 
readEn_outbuff is not asserted, and empty_transpose and 
empty_outbuff signals are deasserted, respectively. 

22-bit result {r21, r20, …, r0} of signed multiplication is 
rounded to 12-bit 2’s complement number by a combinational 
logic circuit based on the sign of result as follows: 

- positive: There are three cases: 
o If {r21, r20, …, r10} is the maximum positive number, 

the rounded result is equal to {r21, r20, …, r10}. 
o If {r21, r20, …, r10} is not the maximum positive 

number and r9=0, the rounded result is equal to {r21, 
r20, …, r10}. 
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o If {r21, r20, …, r10} is not the maximum positive 
number and r9=1, the rounded result is equal to {r21, 
r20, …, r10} + 1. 

- negative: If r9=0, it is equal to {r21, r20, …, r10}; otherwise,  
{r21, r20, …, r10} + 1. 

After rounding, a four-input, 12-bit adder tree is utilized to 
find out either 1-D or 2-D coefficient value in 2’s complement 
representation. It should be noted that 1-D DCT component adds 
only one clock cycle of latency due to its register, which results 
in 208+1=209 clock cycles of latency in total. 
 
2.4. Transpose Buffer 
 

Transpose buffer is a 63×12=756-bit shift-register whose 
operation is similar to the one in [4] . There are two related 
scenarios:   

- serial-in: If writeEn is asserted due to deasserting 
empty_transpose during 1-D DCT computation, a new 12-
bit coefficient is serially shifted in transpose buffer. For 
both scenarios, full and empty signals are never asserted 
and deasserted, respectively. 

- parallel-out: Consider that shift_register={reg62, reg62, …, 
reg0} is composed of 63 12-bit registers. When the shift 
register becomes full, a set of eight registers 
column={reg56, reg48, reg40, reg32, reg24, reg16, reg8, reg0} 
holds the first column of 1-D DCT coefficients. In  the  
next  clock  cycle, the 64th 1-D DCT coefficient is shifted 
in while the first column is loaded into pong buffer, in 
which both writeEn and readEn are asserted. After the 
right-shift, column will hold the second column of 1-D 
DCT coefficients. In a similar manner, whenever readEn is 
asserted by pong buffer, the buffer is shifted to the right 
and column stores the next column coefficients. 

 
2.5. Output Buffer 
 

Output buffer holds 2-D DCT coefficients and provides 
isolation between 2-D DCT hardware in Fig. 1 and another 
component that will be connected its output. Output buffer has 
two registers, namely reg0 and reg1, and their operation is 
controlled by a three-state {empty, almost-full, full} FSM as 
follows: 

- empty: Both registers are empty. If writeEn is asserted, a 
new 12-bit word is loaded into reg0 and FSM goes to 
almost-full state. In empty state, full and empty output 
signals are deasserted and asserted, respectively. 

- almost-full: If  both writeEn and readEn are asserted or 
deasserted, it stays in this state. Furthermore, if they are 
asserted, a new word is loaded into reg0. If writeEn is 
asserted, but readEn is deasserted, a new word is loaded 
into reg1 and it goes to full state. If writeEn is not asserted, 
but readEn is asserted, it goes to empty state since reg0 has 
been read. In almost-full state, full and empty output 
signals are deasserted and asserted, respectively. 
full: If readEn is asserted, it goes to almost-full state while 
old reg1 is copied into reg0. In full state, full and empty 
output signals are asserted and deasserted, respectively. 

It should be emphasized that output buffer component 
introduces only one clock cycle of latency, which results in 
209+1=210 clock cycles of total latency for the proposed 2-D 
DCT hardware. 
 
 

3. Implementation Results and Comparisons 
 

The 2-D DCT design presented in this study is described as a 
device independent fashion in Verilog HDL, simulated and 
verified by a test-bench using Xilinx ISim, and synthesized 
using Xilinx ISE 14.7 for Xilinx Spartan 3E (XC3S500E-
5VQ100), Virtex IV (XC4VSX35-12FF668), and Virtex 7 
(XC7VX330T-3FFG1157) FPGA devices. 

The proposed 2-D DCT architecture is compared against two 
other competitive designs implemented for Virtex IV and 
Spartan 3E by [6] and [8] in Table 1 and Table 2, respectively. It 
should be noted here that both [6] and [8] are based on the row-
column decomposition method and use two 1-D DCT cores with 
a transpose buffer between them. Their main difference is due to 
their implementations of 1-D DCT core, which will also be 
evident in the following tables. 
 

Table 1. Device utilizations using Xilinx Virtex IV 

Logic Utilization Used [6] Used  Available
Number of Slices 376 434 15360 
Number of Slice Flip Flops 388 403 30720 
Number of 4 input LUTs 751 701 30720 
Number of bonded IOBs 33 30 448 
Number of DSP48s 0 4 192 
Block RAMs 42 0 192 

 
Table 2. Device utilizations using Xilinx Spartan 3E 

Logic Utilization Used [8] Used  Available
Number of Slices 1235 444 4656 
Number of Slice Flip Flops 1551 400 9312 
Number of 4 input LUTs 1239 720 9312 
Number of bonded IOBs 23 30 66 
Number of 
MULT18X18SIOs 8 4 20 

 
According to Table 1, the proposed design and [6] result in 

similar device utilizations except for DSP48 and Block RAM 
resources. The design in [6] does not use any multiplier and 
relies heavily on Block RAMs for the implementation of a 2-D 
DCT architecture based on distributed arithmetic. In terms of the 
frequency of these designs, on the other hand, [6] achieves 
around 118.0 MHz as compared to 136.6 MHz by the presented 
design.   

According to Table 2, the proposed design is clearly superior 
to [8] that implements a scaled 1-D DCT algorithm. However, 
[8] with the running frequency of 101.355 MHz seems to be 
faster than the 2-D DCT core that achieves 80.5 MHz on 
Spartan 3E. 

The proposed 2-D DCT hardware with a latency of 210 clock 
cycles per 8x8 pixel block, when mapped to a Spartan 3E and 
Virtex 7 FPGA, takes about 2.6 µs and 1.02 µs per block, 
respectively. These processing rates are enough for achieving at 
least 70 fps for images with 720x480 pixels on Spartan 3E, and 
30 fps for images with 1920x1080 pixels. Consequently, the 
presented 2-D DCT can be used as a core of an M-JPEG video 
compressor directed to SDTV or HDTV applications.  

 
4. Conclusions 

 
In this paper, a low area 2-D 8×8 DCT architecture is 

presented, and its implementation results are compared against 
two other competitive design from the literature. In order to 
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keep the FPGA device utilization as low as possible, the 
proposed design is based on the row-column decomposition 
method, which results in a time-shared use of single 1-D DCT 
core for computing 1-D and 2-D DCT coefficients and a 
transpose buffer for keeping and transposing the 1-D 
coefficients. The proposed 2-D DCT core is described in 
synthesizable Verilog HDL. The synthesis results show that it 
requires low area and achieves high processing rates that may be 
useful in M-JPEG video compressor directed to SDTV or 
HDTV applications. 
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