
An Efficient Low Area Implementation of 2-D DCT on FPGA

Atakan Doğan

Anadolu University, Electrical and Electronics Engineering, Eskişehir, Turkey
atdogan@anadolu.edu.tr

Abstract

This paper presents the design and implementation for 2-D
discrete cosine transform (DCT) with the goal of achieving
low area utilization and high-speed operation on FPGAs.
The design is based on the row-column decomposition
technique, which requires two successive 1-D DCT
transforms and a transpose memory between them for
storing and transposing the results of the first 1-D DCT.
The proposed implementation of 2-D DCT is capable of
compressing at least 70 images per second in 720x480
resolution on Xilinx Spartan 3E and 30 images per second
in 1920x1080 resolution on Xilinx Virtex 7 FPGA.
Consequently, the proposed 2-D DCT design and
implementation can be very useful in various image and
video compressing applications.

1. Introduction

The discrete cosine transform (DCT) plays a key role in
JPEG for still picture compression [1], ITU H.261 [2] for
teleconferencing, and MPEG for multimedia applications [3].
For example, in JPEG baseline encoder, an input image is split
into non-overlapping blocks of 8×8 pixels, the pixel values are
level shifted from unsigned integer to signed integer, and then 2-
D DCT computation is performed on each block.

Among the various architectures and algorithms proposed for
the computation of 2-D DCT, a popular approach is the row-
column decomposition method [4-10]. Its popularity can be
attributed to the following facts: (i) It is based on the
separability property of 2-D DCT and enables the computation
of 2-D DCT by using two successive 1-D DCT transforms. (ii) It
requires a control logic with lower complexity due to its
regularity and modularity. (iii) It reduces the computational
complexity of 2-D DCT by a factor of four. For an 8x8 input
matrix, 2-D DCT algorithm requires 4096 multiplication and
4096 addition operations. The row-column decomposition
method, on the other hand, only needs 1024 multiplication and
1024 addition operations.

In this study, the 2-D DCT architecture introduced by [4] for
an ASIC implementation is adopted, and is modified for a low
area implementation on FPGA. There are of course several
reasons why [4] is chosen to be implemented on FPGA: (i) It
exploits the row-column decomposition. Thus, using single 1-D
DCT core in a time-shared manner is expected to result in low
area utilization. (ii) It uses a shift-register based transpose buffer
that saves block RAM resources. (iii) The control logic can be
distributed among its components, which results in simpler finite
state machines.

The rest of the paper is organized as follows. Section 2
presents details of the proposed 2-D DCT architecture. Section 3
gives the implementation results and compares against other
cores from the literature. Finally, Section 4 concludes the paper.

2. 2-D DCTArchitecture

The overview of the proposed FPGA implementation of 2-D

DCT architecture is shown Fig. 1, which is inspired by [4] .
With respect to Fig. 1, the main components include ping buffer,
pong buffer, 1-D DCT, transpose buffer, and output buffer. It
should be noted here that the modifications to [4] include pong
buffer operation, inclusion of a pipeline register and rounding
logic in 1-D DCT, output buffer, and a stoppable pipeline.
Common to these components are their input and output
interfaces, which are similar to writing into or reading from a
FIFO buffer and described as follows:

- Input interface: A component consumes a new data word
on writeData bus in the next rising edge of clock signal if
writeEn is asserted while full is not asserted during the
current clock period. Thus, the asserted full signal indicates
that the component cannot currently accept a new data
word.
o writeData, input, 8-, 12-, or 96-bit
o writeEn, input, 1-bit
o full, output, 1-bit

- Output interface: A component produces a new data word
on readData bus in the next rising edge of clock signal if
readEn is asserted while empty is not asserted during the
current clock period. Note that if empty is not asserted,
there is a valid data word available on readData bus;
otherwise, component cannot provide a new data word in
the current clock cycle.
o readData, output, 12-, or 96-bit
o readEn, input, 1-bit
o empty, output, 1-bit

As a result of their aforementioned input and output
interfaces, four main components are seamlessly connected in
Fig. 1 as follows:

- readData (Output)ÆwriteData (Input): Data bus between
producer and consumer components is established.

- empty (Output)ÆinverterÆwriteEn (Input): Producer
component can write into consumer component.

- readEn (Input)inverterfull (Output): Consumer
component can read from producer component.

After the detailed description of input and output interfaces,
how each of five components contributes to the computation of
2-D DCT will be explained in the following sections.

2.1. Ping Buffer

Ping buffer is basically a 96-bit shift-register whose

operation is controlled by a two-state {empty, full} finite state
machine (FSM) as follows:

- empty (serial-in): If writeEn is asserted, a new 12-bit word
is serially shifted into ping buffer. Once the eighth

771

12-bit word is inserted into the buffer, FSM goes to the
other state. As a result, ping buffer requires at least eight
clock cycles to become full. In empty state, full and empty
output signals are deasserted and asserted, respectively.

- full (parallel-out): If readEn is asserted, 96-bit current state
of ping buffer is shifted out and FSM goes to the other
state. Thus, ping buffer becomes in empty state again. In
full state, full and empty output signals are asserted and
deasserted, respectively.

Consequently, it takes a total of 64+8=72 clock cycles for an
8x8 matrix of pixels, where 64 cycles are spent for loading all
elements of 8x8 matrix into the buffer, and 8 cycles are needed
for transferring 8x8 matrix row by row to pong buffer.

2.2. Pong Buffer

Pong buffer is simply a 96-bit register whose operation is

managed by a four-state {oned_dct_empty, oned_dct_full,
twod_dct_empty, twod_dct_full} finite state machine as follows:

- oned_dct_empty (parallel-in): If writeEn is asserted, a new
96-bit word (a row of eight pixels) is loaded and FSM goes
to oned_dct_full state. MuxSel signal is not asserted so as
to load from ping buffer. In this state, full and empty output
signals are deasserted and asserted, respectively.

- oned_dct_full (coefficient computation): A new 1-D DCT
coefficient is computed based on the current state of pong
buffer in every clock cycle. Since there are eight pixels per
row, the machine stays here only for eight clock cycle. At
the end of the eighth clock cycle, during which the last
coefficient for a row is being computed, it
goes to twod_dct_empty state if the eighth row is

being processed; otherwise, it makes a transition to
oned_dct_empty state. In this state, full and empty output
signals are asserted and deasserted, respectively.

- twod_dct_empty (parallel-in): This state is similar to
oned_dct_empty state except that MuxSel signal is asserted
in order to load from transpose buffer (a column of eight 1-
D DCT coefficients) instead of ping buffer.

- twod_dct_full (coefficient computation): This state is
similar to oned_dct_full state except that it goes to either
oned_dct_empty state if the eighth column is being
processed, or twod_dct_empty state at the end of the eighth
clock cycle.

With respect to the pong buffer operation, 64+8=72 clock
cycles are required for the computation of 1-D and 2-D DCT
coefficients. As a result, pong buffer completes the processing
of 8x8 matrix of pixels in 144 clock cycles. Furthermore, ping
and pong buffers together introduces (72+144)-8=208 clock
cycles of latency.

2.3. 1-D DCT

According to [9], eight-point 1-D DCT can be computed

based on the row-column decomposition technique as follows:

12

Reset
 Clock

MuxSel

96

Tr
an

sp
os

e
B

uf
fe

r Mux Ping
Buffe

r

96 12
1-D
DC
T

12

O
ut

pu
t

B
uf

fe
r 12

Pong
Buffe

96 96

Fig. 1. Architecture of 2-D DCT hardware

772

where zi is the transformed coefficient, xi is the pixel data, a=C1,
b=C2, c=C3, d=C4, e=C5, f=C6, g=C7, Ci=0,5cos(kπ/16),
i=0,1,..7, and k=1,2,..7. Let X0 = x0+x7, X2 = x1+x6, X4 = x2+x5,
X6 = x3+x4, X1 = x0-x7, X3 = x1-x6, X5 = x2-x5, and X7 = x3-x4.

In order to calculate the coefficients by means of these
equations, 1-D DCT architecture in Fig. 2 is designed. In Fig. 2,
the topmost Add/Sub component is used to compute either
X0=(x0+x7) when OddSel=0 or X1=(x0-x7) when OddSel=1, and
so on. As a result, OddSel is asserted only if an odd-indexed
coefficient {z1, z3, z5, z7} is calculated; Add/Sub components
find out either {X0, X2, X4, X6} or {X1, X3, X5, X7} in parallel.

After add/sub operations, four integer multiplication
operations are performed in parallel for every coefficient. In Fig.
2, w[39:0] denotes the set of weights used during a
multiplication. For example, z2 = b*×X0 + f*×X2 � f*×X4 �
b*×X6 and w[39:0] ={b*, f*, -f*, -b*}, where * is used to indicate
10-bit 2’s complement representations of the related weight
values. Even though it is not shown in Fig. 2, there is single
8×40-bit look-up table where it is addressed by 3-bit index
value of the coefficient being computed and its each 40-bit row
stores four weights in 2’s complement representation per
coefficient.

After multiplication operations, there is 88-bit register whose
operation is controlled by a two state {empty, full} FSM as
follows:

- empty: If writeEn is asserted, a new 88-bit word is loaded
into register and FSM goes to the other state. In empty
state, full signal is deasserted, and empty_transpose (empty
signal for transpose buffer) and empty_outbuff (empty
signal for output buffer) signals are asserted.

- full: While either 1-D DCT or 2-D DCT coefficient is
computed, if either readEn_transpose or readEn_outbuff is
asserted, 88-bit current state of register is provided with
either transpose buffer or output buffer, respectively.
Furthermore, FSM stays in this state if writeEn is found to
be asserted; otherwise, it goes to the other state. In this
state, full signal is asserted only if readEn_transpose or
readEn_outbuff is not asserted, and empty_transpose and
empty_outbuff signals are deasserted, respectively.

22-bit result {r21, r20, …, r0} of signed multiplication is
rounded to 12-bit 2’s complement number by a combinational
logic circuit based on the sign of result as follows:

- positive: There are three cases:
o If {r21, r20, …, r10} is the maximum positive number,

the rounded result is equal to {r21, r20, …, r10}.
o If {r21, r20, …, r10} is not the maximum positive

number and r9=0, the rounded result is equal to {r21,
r20, …, r10}.

writeData[59:48]

writeData[47:36]

writeData[71:60]

writeData[35:24]

writeData[83:72]

writeData[23:12]

writeData[95:84]

writeData[11:0]

OddSel

i0

 Add/Sub
o

OddSel

i0

 Add/Sub
o

OddSel

i0

 Add/Sub
o

OddSel

i0

 Add/Sub
o

12

12

12

12

12

12

12

12

w[9:0
10

12 Mul

w[19:10
10

12 Mul

w[29:20
10

12 Mul

w[39:30
10

12 Mul

22

22

22

22

88
12

12
Roun

12

i0

 o
i1
Ad

12

R
eg

is
te 88

22

22

22

22

Cloc

Roun

12
Roun

12

i0

 o
i1
Ad

Roun

i0

 o

i1
Ad

12

Fig. 2. Architecture of 1-D DCT hardware

773

o If {r21, r20, …, r10} is not the maximum positive
number and r9=1, the rounded result is equal to {r21,
r20, …, r10} + 1.

- negative: If r9=0, it is equal to {r21, r20, …, r10}; otherwise,
{r21, r20, …, r10} + 1.

After rounding, a four-input, 12-bit adder tree is utilized to
find out either 1-D or 2-D coefficient value in 2’s complement
representation. It should be noted that 1-D DCT component adds
only one clock cycle of latency due to its register, which results
in 208+1=209 clock cycles of latency in total.

2.4. Transpose Buffer

Transpose buffer is a 63×12=756-bit shift-register whose
operation is similar to the one in [4] . There are two related
scenarios:

- serial-in: If writeEn is asserted due to deasserting
empty_transpose during 1-D DCT computation, a new 12-
bit coefficient is serially shifted in transpose buffer. For
both scenarios, full and empty signals are never asserted
and deasserted, respectively.

- parallel-out: Consider that shift_register={reg62, reg62, …,
reg0} is composed of 63 12-bit registers. When the shift
register becomes full, a set of eight registers
column={reg56, reg48, reg40, reg32, reg24, reg16, reg8, reg0}
holds the first column of 1-D DCT coefficients. In the
next clock cycle, the 64th 1-D DCT coefficient is shifted
in while the first column is loaded into pong buffer, in
which both writeEn and readEn are asserted. After the
right-shift, column will hold the second column of 1-D
DCT coefficients. In a similar manner, whenever readEn is
asserted by pong buffer, the buffer is shifted to the right
and column stores the next column coefficients.

2.5. Output Buffer

Output buffer holds 2-D DCT coefficients and provides
isolation between 2-D DCT hardware in Fig. 1 and another
component that will be connected its output. Output buffer has
two registers, namely reg0 and reg1, and their operation is
controlled by a three-state {empty, almost-full, full} FSM as
follows:

- empty: Both registers are empty. If writeEn is asserted, a
new 12-bit word is loaded into reg0 and FSM goes to
almost-full state. In empty state, full and empty output
signals are deasserted and asserted, respectively.

- almost-full: If both writeEn and readEn are asserted or
deasserted, it stays in this state. Furthermore, if they are
asserted, a new word is loaded into reg0. If writeEn is
asserted, but readEn is deasserted, a new word is loaded
into reg1 and it goes to full state. If writeEn is not asserted,
but readEn is asserted, it goes to empty state since reg0 has
been read. In almost-full state, full and empty output
signals are deasserted and asserted, respectively.
full: If readEn is asserted, it goes to almost-full state while
old reg1 is copied into reg0. In full state, full and empty
output signals are asserted and deasserted, respectively.

It should be emphasized that output buffer component
introduces only one clock cycle of latency, which results in
209+1=210 clock cycles of total latency for the proposed 2-D
DCT hardware.

3. Implementation Results and Comparisons

The 2-D DCT design presented in this study is described as a
device independent fashion in Verilog HDL, simulated and
verified by a test-bench using Xilinx ISim, and synthesized
using Xilinx ISE 14.7 for Xilinx Spartan 3E (XC3S500E-
5VQ100), Virtex IV (XC4VSX35-12FF668), and Virtex 7
(XC7VX330T-3FFG1157) FPGA devices.

The proposed 2-D DCT architecture is compared against two
other competitive designs implemented for Virtex IV and
Spartan 3E by [6] and [8] in Table 1 and Table 2, respectively. It
should be noted here that both [6] and [8] are based on the row-
column decomposition method and use two 1-D DCT cores with
a transpose buffer between them. Their main difference is due to
their implementations of 1-D DCT core, which will also be
evident in the following tables.

Table 1. Device utilizations using Xilinx Virtex IV

Logic Utilization Used [6] Used Available
Number of Slices 376 434 15360
Number of Slice Flip Flops 388 403 30720
Number of 4 input LUTs 751 701 30720
Number of bonded IOBs 33 30 448
Number of DSP48s 0 4 192
Block RAMs 42 0 192

Table 2. Device utilizations using Xilinx Spartan 3E

Logic Utilization Used [8] Used Available
Number of Slices 1235 444 4656
Number of Slice Flip Flops 1551 400 9312
Number of 4 input LUTs 1239 720 9312
Number of bonded IOBs 23 30 66
Number of
MULT18X18SIOs 8 4 20

According to Table 1, the proposed design and [6] result in

similar device utilizations except for DSP48 and Block RAM
resources. The design in [6] does not use any multiplier and
relies heavily on Block RAMs for the implementation of a 2-D
DCT architecture based on distributed arithmetic. In terms of the
frequency of these designs, on the other hand, [6] achieves
around 118.0 MHz as compared to 136.6 MHz by the presented
design.

According to Table 2, the proposed design is clearly superior
to [8] that implements a scaled 1-D DCT algorithm. However,
[8] with the running frequency of 101.355 MHz seems to be
faster than the 2-D DCT core that achieves 80.5 MHz on
Spartan 3E.

The proposed 2-D DCT hardware with a latency of 210 clock
cycles per 8x8 pixel block, when mapped to a Spartan 3E and
Virtex 7 FPGA, takes about 2.6 µs and 1.02 µs per block,
respectively. These processing rates are enough for achieving at
least 70 fps for images with 720x480 pixels on Spartan 3E, and
30 fps for images with 1920x1080 pixels. Consequently, the
presented 2-D DCT can be used as a core of an M-JPEG video
compressor directed to SDTV or HDTV applications.

4. Conclusions

In this paper, a low area 2-D 8×8 DCT architecture is

presented, and its implementation results are compared against
two other competitive design from the literature. In order to

774

keep the FPGA device utilization as low as possible, the
proposed design is based on the row-column decomposition
method, which results in a time-shared use of single 1-D DCT
core for computing 1-D and 2-D DCT coefficients and a
transpose buffer for keeping and transposing the 1-D
coefficients. The proposed 2-D DCT core is described in
synthesizable Verilog HDL. The synthesis results show that it
requires low area and achieves high processing rates that may be
useful in M-JPEG video compressor directed to SDTV or
HDTV applications.

5. References

[1] G. K. Wallace, "The JPEG still picture compression

standard”, Communications of the ACM, vol.34, no. 4,
pp.30-44, April 1991.

[2] M. L. Liou, "Overview of the p x 64 kbit/s video coding
standard," Communications of the ACM, vol. 34, No. 4, pp.
59-63, April 1991.

[3] D. L. Gall, "MPEG: a video compression standard for
multimedia applications", Communications of the ACM,
vol. 34, no. 4, pp. 46-58, April 1991.

[4] S.-C. Hsia, S.-H. Wang, "Shift-register-based data
transposition for cost-effective discrete cosine transform",
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 15, no. 6, pp. 725-728, June 2007.

[5] L. V. Agostini, I. S. Silva, S. Bampi, "Multiplierless and
fully pipelined JPEG compression soft IP targeting
FPGAs", Microprocessors and Microsystems, vol. 31, no.
8, pp. 487-497, December 2007.

[6] R. E. Atani, M. Baboli, S. Mirzakuchaki, S. E. Atani, B.
Zamanlooy, "Design and implementation of a 118 MHz 2D
DCT processor", IEEE International Symposium on
Industrial Electronics, 2008, pp. 1076-1081.

[7] E. D. Kusuma, T. S. Widodo, "FPGA implementation of
pipelined 2D-DCT and quantization architecture for JPEG
image compression", International Symposium in
Information Technology, 2010, pp. 1-6.

[8] T. Pradeepthi, A. P. Ramesh, "Pipelined architecture of 2D-
DCT, quantization and zigzag process for JPEG image
compression using VHDL", International Journal of VLSI
Design & Communication Systems, vol. 2, no. 3, pp. 99-
110, September 2011.

[9] S. Sanjeevannanavar, N. Nagamani, "Efficient design and
FPGA implementation of JPEG encoder using Verilog
HDL", International Conference on Nanoscience,
Engineering and Technology, 2011, pp. 584-588.

[10] A. Madisetti, A. N. Willson, Jr., "A 100 MHz 2-D 8x8
DCT/IDCT processor for HDTV applications", IEEE
Transactions on Circuits and Systems for Video
Technology, vol. 5, no. 2, pp. 158-165, April 1995.

775

