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Abstract 
 

This paper presents a probabilistic approach to evaluate the 
small-signal stability of power systems in the presence of 
communication delays. An exact method is first proposed to 
determine the relationship between delay margin and system 
parameters such as the system load. The delay margin is 
then modeled as a random variable and the probability 
density function (PDF) of the delay margin is determined 
based on the PDF of the load using a Monte Carlo 
simulation approach. The communication delays are 
assumed to be uniformly distributed in a practical range and 
the probability of system being small-signal stable for a 
given time delay is determined using the estimated PDF of 
the delay margin. The proposed method is applied to a 
single-machine-infinite bus (SMIB) power system with an 
exciter. 
 

 
1. Introduction 

 
A significant amount of time delays has been observed in 

power systems during the use of phasor measurement units 
(PMU) and various communication links in wide-area 
measurement/monitoring systems (WAMS). The measurement 
and communication delays involved between the instant of 
measurement and that of signal being available to the controller 
can typically be in the range of 100-700 msec depending on the 
type of the communication link [1, 2]. 

The inevitable large time delays in power systems may have 
a destabilizing impact on the system dynamics and lead to 
unacceptable performance such as loss of synchronism and 
instability. Therefore, stability analysis and controller design 
methods must take into account time delays and practical tools 
should be developed to study the complicated dynamic behavior 
of time-delayed power systems. The previous studies on the 
dynamics of time-delayed power systems have mainly focused 
on the following issues: i) To investigate the time delay 
influence on the controller design for power system stabilizers 
(PSS) [3], for load frequency control (LFC) or automatic 
generation control (AGC) [4, 5],  ii) To eliminate periodic and 
chaotic oscillations in power systems by applying time-delayed 
feedback control [6]; iv) To analyze the effect of time delay on 
small-signal stability [7-9]. 

There exists little work on the small-signal stability of time-
delayed power systems. In [7], a method to determine the delay 
margin, which was first presented in [10] for analyzing the 

stability of the time-delayed linear time-invariant systems based 
on Rekasius substitution [11], was applied to the SMIB power 
system to estimate delay margin. The impact of various system 
parameters on the delay margin was also investigated in [7]. An 
optimal-based algorithm was proposed in [8] to trace boundaries 
of small-signal stability region in the presence of 
communication delays. 

The small-signal stability analysis of time delayed power 
systems may be viewed as a probabilistic rather than a 
deterministic problem. The need for application of probabilistic 
techniques for small-signal stability is motivated by the random 
nature of the steady-state operating conditions of the system and 
communication delays. The steady-state operating condition 
strongly depends on load that is a random process, and the delay 
margin that defines the stability boundary is a function of the 
system load as well as other parameters. Therefore, the delay 
margin may fluctuate randomly in a certain range and it should 
be regarded as a random variable. The size of communication 
delays in WAMS mainly depends on the physical media of 
communication as well as several other factors such as the 
phasor packet size, transmission protocol employed and 
communication network load (congested or idle). As a result, a 
system being small-signal stable for a given time delay and 
operating condition is a random event. The deterministic 
approaches presented in [7-9], which have not taken into 
account the probabilistic aspect of the stability problem, provide 
a limited description of the system stability characteristics. 
Therefore, there is a strong need for a probabilistic approach to 
evaluate the small-signal stability of power systems in the 
presence of time delays, and to determine the probability of 
stability for a given steady-state operating condition. 

This paper proposes a probabilistic approach to determine 
the probability of stability, a stability index, for a given steady-
state operating condition by considering the random nature of 
both system load and communication delays. Firstly, an 
analytical formula to compute the delay margin is developed 
based on an exact and direct method presented in [9, 12]. 
Secondly, a Monte Carlo simulation approach is used to 
estimate the PDF of delay margin in terms of the PDF of system 
load. Using the estimated PDF of the delay margin, the 
probability of system being small-signal stable (stability index) 
for a given time delay is determined. Such a stability index 
could be used to measure the degree of stability of the system 
for a given steady-state operating condition and time delay. The 
proposed method is applied to a SMIB power system with an 
exciter. The effect of system load on the delay margin and on 
the probability of stability is investigated. 
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2. Small-Signal Stability with Time Delay 

 
When a time delay is observed in the system, power system 

dynamics should be described by the following time-delayed 
differential-algebraic equation (DAE) model [7-9]: 
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where nx ∈ℜ  and ( ) nx x tτ τ= − ∈ℜ  are the vectors of delay-
free and time-delayed state variables, respectively such as rotor 
angles and control states of exciter and speed governor; 

my ∈ℜ  
and ( ) my y tτ τ= − ∈ℜ  are the vectors of delay-free and time-
delayed algebraic variables, respectively such as voltage 
magnitude and phase angles at the load buses;  0τ >  is the 
constant time delay observed in the system, and kβ ∈ℜ  is the 
vector of parameters such as real/reactive power demand at the 
buses, transmission line parameters, and control set points and 
gains. The dynamics of generators, control devices (exciter, 
speed governor, stabilizer) and load dynamics together define 
the set of differential equations. The algebraic equations are the 
power flow equations representing real and reactive power 
balances at the load buses. 

The small-signal stability is the ability of the power system 
to maintain synchronism under small disturbances that occur 
continually on the system because of small variations in loads 
and generation. The disturbances are considered sufficiently 
small for linearization of system equations around an 
equilibrium point to be permissible for the purpose of stability 
analysis. By linearizing (1) at an equilibrium point 0 0( )x , y , we 
can easily obtain the following incremental DAE: 
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are the Jacobian matrices with respect to the state variables and 
the time-delayed state variables evaluated at the equilibrium 
point 0 0( )x , y . When the algebraic Jacobian matrices 0D ,Dτ  
are non-singular, the incremental DAE of (1) could be reduced 
to a set of incremental ordinary differential equations (ODEs), 
and local dynamics in the neighborhood of the equilibrium point 
could be investigated by the time-delayed ODEs: 

0( ) ( ) ( ) ( ) ( )x t A x t A x tτ τΔ β Δ β Δ τ⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦
% %&           (4) 

where  

[ ] [ ][ ] [ ]-1( ) ( ) ( ) ( ) ( ) ;  0i i i i iA A B D C i ,β β β β β τ⎡ ⎤ = − =⎣ ⎦
%  

The stability of time-delayed system given in (4) is determined 
by the location of system eigenvalues that can be obtained from 
the following characteristic equation: 

0( ) ( ) ( ) ( ) ( ) 0s ss, det sI A A e P s Q s eτ τ
ττ β β − −⎡ ⎤Δ = − − = + =⎣ ⎦

% % (5) 

where ( ), ( )P s Q s  are polynomials in s with real coefficients 

determined by the elements of 0A⎡ ⎤
⎣ ⎦
%  and Aτ⎡ ⎤

⎣ ⎦
%  matrices. It is 

obvious that the roots of (5) are a function of the time delay τ . 

Let’s denote these roots by 1 2 ns s ,s ,...,sτ τ τ τ⎡ ⎤= ⎣ ⎦ . Similar to the 

delay-free system, if the following condition is hold, then the 
system is small-signal stable. 

( )( ) 0 for i imax real s s sτ τ τ< ∀ ∈   
           

(6) 

In other words, if all the roots are in the negative half part of 
the complex plane, the system is small-signal stable. 
 

3. Delay Margin Computation 
 

The main goal of the stability studies of delayed systems is to 
compute the delay margin for stability. As with the delay-free 
system (i.e., 0τ = ), the stability of the time-delayed system of 
(4) depends on the locations of roots the characteristic equation 
of (5). A necessary and sufficient condition for the system to be 
asymptotically stable is that all the roots of the characteristic 
equation of (5) lie in the left half of the complex plane. As seen 
in (5), there exists an exponential type transcendental term in 
the characteristic equation. The transcendentality brings 
infinitely many characteristic roots, which makes the stability 
problem a complex task. However, the delay margin problem is 
to find values cτ  for which the characteristic equation of (5) has 
roots (if any) on the imaginary axis. Clearly, ( ) 0s,τΔ =  is an 
implicit function of s and τ  which may, or may not, cross the 
imaginary axis. Assume for simplicity that ( 0) 0s,Δ =  has all 
its roots in the left half-plane. That is, the delay-free system is 
stable. If for some cτ , ( ) 0cs,τΔ =  has root on the imaginary 
axis at cs jω=  (where subscript c refers to “crossing” the 
imaginary axis), so does ( ) 0cs,τΔ − = , for the same value of 

cτ  and cω  . Hence, looking for roots on the imaginary axis 
reduces to finding values of � cτ  for which ( ) 0cs,τΔ =  and 

( ) 0cs,τΔ − =  have a common root. That is, 

( ) ( ) 0

( ) ( ) 0

c

c

s

s

P s Q s e

P s Q s e

τ

τ

−+ =

− + − =
      (7) 

By eliminating the exponential term in (7), we get the following 
polynomial:  

( ) ( ) ( ) ( ) 0P s P s Q s Q s− + − =       (8) 
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If we replace s by cjω  in (8), we have the following 

polynomial in 2
cω : 

2( ) ( ) ( ) ( ) ( ) 0c c c c cW P j P j Q j Q jω ω ω ω ω= − − − =    (9) 

Please note that nth degree transcendental characteristic 
equation with delay given in (5) is now converted into a 2n-
degree polynomial without transcendentality given by (9) and 
its real roots coincide with the imaginary roots of (5) exactly. It 
must be noted that these real roots, if exist, will be dependent on 
the system parameters β  implicitly since the coefficients of 

( )P s  and ( )Q s  of (5) are functions of the system parameters 
β . Depending on the roots of (9), the following situation may 
occur: 

i) The polynomial of (9) does not have any positive real roots, 
which implies that the characteristic equation of (5) does 
not have any roots on the jω -axis. In that case, the system 
is stable for all 0τ ≥ , indicating that the system is delay-
independent stable. 

ii) The polynomial of (9) has at least one positive real root, 
which implies that the characteristic equation of (5) has at 
least a pair complex eigenvalues on the jω -axis. In that 
case, the system is delay-dependent stable.  

For a positive real root cω , the corresponding value of delay 

margin cτ  can be easily obtained using (7) [9]: 
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4. Probability of Stability 
 

Time delays and delay margin for an operating point are 
probabilistic in nature. The size of communication delays in 
WAMS mainly depends on the physical media of 
communication (i.e., fiber-optic cables, digital microwave links, 
power lines, telephone lines and satellite links) as well as 
several other factors such as the size phasor packet, transmission 
protocol employed and communication network load (congested 
or idle). The experimental results show that communications 
delays range from milliseconds to several 100 msec, indicating 
its randomness. Similarly, the delay margin may fluctuate 
randomly in a certain range since it is a function of system 
parameters that continuously change in daily operation of the 
system. Note that the analytical expression for the delay margin 
given by (10) indicates that the delay margin is determined by 
the coefficients of the polynomials ( )P s , ( )Q s  and by the 

positive real root cω  of the polynomial 2( )cW ω  given in (9). 
These coefficients and the root depend on the steady-state 
condition and system parameters such as system load level, 
transmission line and generator reactances, generator damping, 
and controller parameters. Therefore, the delay margin cτ  will 
be a function of system parameters and could be synthetically 
described as  

( ( ), ( ), ( ), )c i j cF p qτ β β ω β β=      (11) 

where ip  and jq  represent the coefficients of ( )P s  and 

( )Q s , respectively. 
Among system parameters, the system load level heavily 

affects the delay margin and it is probabilistic in nature since it 
keeps changing in actual operation of power systems. Therefore, 
deterministic approaches as to determine delay margin do not 
reflect the true characteristics of the system stability boundary, 
and the delay margin should be considered as a random variable 
in order to take into account of the random nature of the system 
load. Based on this argument, a system being small-signal stable 
for a given time delay and operating point is a random event. 
The information on the probability of this random event is 
crucial for power system planning studies and safe operation. 
Under the assumption that the probability density function 
(PDF) of the delay margin is known, the probability of the 
system being small-signal stable can be determined by 

{ } { }cP stability =P τ τ<       (12) 

This probability value is used as a stability index to measure the 
degree of small-signal stability of the system for a given loading 
condition and time delay. 

There exist two main methods in the literature for 
probabilistic assessment of the stability, namely conditional 
probability and Monte Carlo simulation approaches. The delay 
margin is a complicated function of the system load as well as 
other parameters including voltages, reactances, generator 
parameters and controller gains, etc. In other words, the function 
that relates the delay margin to the system load is not 
analytically invertible. Therefore, the PDF of the delay margin 
cannot be obtained analytically in a closed-form expression 
using conditional probability method. In such cases, Monte 
Carlo simulation method should be used to estimate the PDF of 
the delay margin and thus, to compute the probability of small-
signal stability. In this paper, the Monte Carlo method is 
adopted to estimate the PDF of the delay margin. 

The Monte Carlo simulation approach applied into the small-
signal stability consists of three parts. The first part simulates 
the occurrence of the uncertainties in time delay τ  and in the 
system load. A random number generator is employed to 
generate random samples for the time delay and the system load 
from their corresponding distributions. The second part is to 
compute the corresponding random samples of delay margins 
using the analytical relation of (10) or (11) based on every load 
value that is generated in the first part and determines the 
estimated PDF of the delay margin cτ  using a histogram. In the 
third part, based on the simulated values of τ  and cτ , an 
estimate of probability of stability is computed. In order to 
estimate the probability of stability, a random sample 

{ }c c c cN, ,...,τ τ τ τ1 2=  from the delay margin, and a random 

sample { }N, ,...,τ τ τ τ1 2=  from the time delay have been 
simulated. Given the two independent samples, an estimate of 
the probability of stability is then obtained as follows: 

{ } { } s
c 2N

NP stablity =P lim
N

τ τ
→∞

≤ =      (13) 

where N  is the total number of Monte Carlo trials and sN  is 
the number of couples ( ;  1ci j, i, j ,...,Nτ τ = ) for which j ciτ τ≤ . 
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Fig. 1. Single-machine-infinite-bus power system with an 

exciter 
 

5. SMIB System Application 
 

The SMIB system with an exciter whose one-line diagram 
given in Fig. 1 is used to illustrate the application of the 
proposed method to stability analysis of the delayed power 
systems. Nominal values of system parameters are given in [7]. 
The dynamics of the SMIB system can be described by the 
following set of differential equations. It is supposed that there 
exists a time delay in the measurement of generator terminal 
voltage ( )aV t  [7]. 

0
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where the electrical output power, generator terminal voltage 
and the direct-axis current are given as follows: 

2 2
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′ ′+ +
′ −

=
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The meaning of symbols in (14) and (15) are given in [7, 9]. We 
can easily rewrite (14) into the general form given by (1) by 
defining the dynamic and algebraic state variables as follows: 

T
fdx E Eδ ω⎡ ⎤′= ⎣ ⎦  T

G a dy P V I= ⎡ ⎤⎣ ⎦  and 

( ) (ay t V tτ τ− = −⎡ ⎤⎣ ⎦ . The following are the parameters that will 
have an impact on the delay margin and probability of stability: 
Generator mechanical input power mP , generator damping D , 
generator transient reactance dx′ , transmission line reactance

 
ex , the exciter gain AK . The parameter vector is 

T
m d e AP D x x Kβ ′= ⎡ ⎤⎣ ⎦ . Linearization of system 

equations of (14) at an equilibrium point 0 0( )x , y  for a fixed 
system parameter 0β  results in the following time-delayed 
state-space equation 

0( ) ( ) ( ) ( ) ( )x t A x t A x tτ τΔ β Δ β Δ τ⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦
% %&     (16) 

where the reduced system matrices are as follows 
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Fig. 2. Variation of delay margin with respect to mechanical 

power 
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Fig. 3. Effect of load standard deviation on the probability of 

stability 
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All the coefficients of the reduced system matrices given above 
could be found in [9]. The characteristic equation of the 
linearized system of (16) can be easily obtained using (5). The 
characteristic equation has the following form: 

4 3 2
3 2 1 0

2
2 1 0

( , ) ( )

            ( ) 0s

s s p s p s p s p

q s q s q e τ

τ
−

Δ = + + + +

+ + + =
   (17) 

The coefficients i ip ,q  of the polynomials ( ), ( )P s Q s  in terms 
of system parameters are given in [9]. Substituting ( )P s and 

( )Q s  polynomials into (9) and we obtain an 8th order 
polynomial as follows: 
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Once the positive real roots of this polynomial ( cω ) are 
obtained, the delay margin for each root can be determined by 
the following expression that is obtained by 
substituting ( )cP s jω= and ( )cQ s jω=  polynomials given in 
(17) into (10): 

5 3
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6 4 2 0

1 2 ;  

0,1, 2,...,

c c c
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t t t t
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ω ω ω πτ
ω ωω ω ω

− ⎛ ⎞+ +
= +⎜ ⎟⎜ ⎟+ + +⎝ ⎠

= ∞

   (19) 

where the coefficients 0 1 2 3 4 5 6 and  t ,t ,t ,t ,t ,t t  are real-valued and 
could be found in [9]. 

6. Results 

6.1. Delay Margins 
In this section, we compute the delay margin for a wide range 

of system load to investigate its effects on the delay margin. mP  
value is varied in the range of 0 1.0 mP pu= −  while other 
system parameters are kept constant at their nominal values. 
Using the proposed method, the delay margins cτ  are 
computed. Fig. 2 shows the variation of the delay margin with 
respect to mP . It is clear that the delay margin decreases as mP  
increases. The area under the curve defines small-signal stability 
region of the system. 

 
6.2. Probability of Stability 

This section presents results on the probability of stability 
and the effects of changes in SMIB system parameters on the 
probability of stability. Recall that the parameters of interest are 

T
m d e AP D x x Kβ ′= ⎡ ⎤⎣ ⎦ . Among these parameters, the 

system load mP  is assumed to be normally distributed with a 
mean value of 0 0.5 mP pu=  (base case) and a standard 
deviation of 10%  of its mean value while the rest of parameters 
are first kept unchanged at their nominal value. Similarly, time 
delays τ  are assumed to be uniformly distributed around a 
mean value 105meanτ =  msec with a deviation of 25τΔ =  
msec. The mean value of the delay is selected as the delay 
margin cτ  computed for the mean value of the load 

0 0.5 mP pu= . To estimate the PDF of the delay margin, Monte 

Carlo simulation has been performed with 410N =  independent 
random samples of the system load and time delay, so obtaining 

810  independent couples of the load and time delay for 
computation of the probability of stability using (13). This 
number assures a very reliable estimate of the probability of 
stability. 
 Fig. 3 shows the probability of stability at different values of 
the time delay τ . The probabilities of stability are given for 
three different standard deviations of the system load, namely 5 
%, 10 % (base case) and 20 % of its mean value in order to 
investigate the effect of uncertainty associated with load on the 
probability of stability. Note that when the time delay is less 

than its mean value ( 105 msecτ ≤ ), the probability of stability 
decreases with an increase in the uncertainty associated with the 
load. On the other hand, the probability of stability increases 
when the time delay is larger than its mean value. 

7. Conclusions 

 This paper has addressed the necessity of modeling the 
delay margin as a random variable in small-signal stability 
studies of time-delayed power systems and has illustrated the 
development of a probabilistic stability index of small-signal 
stability in the presence of communication delays. An efficient 
method for computation of the delay margin in terms of system 
parameters has been presented and a Monte Carlo simulation 
method has been proposed to estimate the PDF of the delay 
margin and the probability of stability. It is found that the 
probability of stability values reduce with increasing the load 
uncertainty, resulting in a less stable system. 
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