

AN FPGA OPTIMIZED IMPLEMENTATION OF THE ADVANCED
ENCRYPTION STANDARD ALGORITHM

Nikos Moshopoulos Kostas Marinis Lefteris Chaniotakis Kiamal Pekmestzi
{nikos, kmarinis, lchaniot, pekmes}@microlab.ntua.gr

Microprocessors and Digital Systems Laboratory, Department of Electrical and Electronic Engineering, National
Technical University of Athens, 9 Iroon Polytechneiou, Zografou, 157 73, Athens, Greece

Key words: AES, Rijndael, Cryptography, FPGA

ABSTRACT
In this paper, an FPGA implementation of the
Advanced Encryption Standard (AES) algorithm is
presented. Several options regarding the use of on-
chip RAM and internal pipelining are examined. The
proposed architecture combines high throughput with
low area consumption.

I. INTRODUCTION
The rapid evolution of the e-business during the last two
decades has augmented the need for security in
information and networking systems. The role of single-
key cryptography has become even more prevalent in the
infrastructure of secure systems. The recently announced
Advanced Encryption Standard (AES) is expected to
replace DES in the near future, in terms of cryptographic
functionality. This introduces a small overhead for
software platforms since the encryption module can be
easily updated. However, applications with higher
throughput requirements, require hardware support and in
many cases special purpose ASICs for their efficient
realization. The adoption of the new standard in the
already installed hardware platforms is inevitable.
Moreover, the limited amount of information and the lack
of reports on cryptanalytic attacks regarding the new
standard, as well as the small number of tested and
verified hardware designs and implementations, increase
the risk of an ASIC fabrication. On the other hand, Field
Programmable Gate Array (FPGA) devices can provide
the hardware performance required along with flexibility,
low cost and small time-to-market margins.
The incorporation of reconfigurable logic devices into
modern hardware platforms requires an in-depth study of
the specifications in terms of speed, cost and
expandability with respect to the application. All these
aspects are examined and discussed in this paper. In
section II, an overview of the Rijndael algorithm is
presented. Both the algorithm core and the key scheduling
are analyzed. The internal architectural blocks are well

defined, taking into account the hardware resources and
specific features of the target devices. In section III, each
unit is carefully mapped to the available hardware
resources. Several architectural approaches are discussed
in section IV, varying in terms of area, speed and
throughput, for different FPGA parts. Section V includes
implementation results and comparisons with previous
work done in this area.

II. THE RIJNDAEL ALGORITHM
The Rijndael algorithm [1] is a proposal of Joan Daemen
and Vincent Rijmen of Proton World and the University
of Leuven respectively. The algorithm parameters
discussed in this paper are:

⇒ 128-bit data blocks
⇒ 128-bit user provided key
⇒ 10 rounds for encryption / decryption.

The algorithm consists of two basic functional blocks: the
core and the key scheduling. The core realizes the actual
process of ciphering and de-ciphering, while the key
scheduling is responsible for the expansion of the user-
supplied key and the generation of the intermediate round
keys.

THE ALGORITHM CORE
The core consists of four discrete processing stages:
⇒ The BYTE_SUB transformation, which is a non-

linear byte substitution operating on each of the data
block bytes independently.

⇒ The SHIFT_ROW transformation that mixes the
data block on a byte level.

⇒ The MIX_COLUMN transformation, which denotes
a long word modulo multiplication over GF(28).

⇒ The ROUND_KEY addition that corresponds to a
bit wise XOR operation of the data block with the
round key.

Each stage has a 128-bit wide input and a 128-bit wide
output. The structure of the algorithm core for one round
of encryption/decryption is illustrated in Fig. 1.

Plain Text

BYTE_SUB

SHIFT_ROW

MIX_COLUMN

CipherText

Round < 10

Key (0)

Key
(Round)

Round =10

Cipher Text

Key (10)

INV_MIX_COLUMN

Round =0

INV_BYTE_SUB

INV_SHIFT_ROW

Key
(Round)

Plain Text

(a) (b)

Round > 0

Figure 1. Rijndael algorithm flow for (a) encryption, and

(b) decryption

The symbol ⊕ denotes the ADD_ROUND_KEY stage,
which is a bitwise XOR between two 128-bit data sets.
The round keys are provided by the key scheduling unit.
The BYTE_SUB transformation requires two types of S-
Boxes (an 8x256 matrix), one for encryption and another
for decryption. It is a non-linear byte substitution.
In the Forward and Inverse SHIFT_ROW transformations
the 128-bit data bus is transposed on a byte basis.
Considering Data[1…16] as an array of 16 bytes, the
SHIFT_ROW transformation derives a new array
DataShiftRow according to the following algorithm:

Input : Data[1..16], 16 bytes array
Output : DataShiftRow [1..16], 16 bytes array
Algorithm : Shift_Row(Data, DataShiftRow)
for (i = 1; i < 17; i++) {

If encryption DataShiftRow[i] = Data[5·i mod 16];
 else DataShiftRow [i] = Data[13·i mod 16];

}

In the MIX_COLUMN transformation the 128-bit input is
organized into a 4x4 byte matrix. Each column consists of
four bytes, and it is considered a polynomial with
coefficients in GF(28).
Each column is multiplied by a fixed polynomial, which
is c(x)=’03’x3+’01’x2+’01’x+’02’ in the forward
transform, and d(x)=’0B’x3+‘0D’x2+‘09’x+‘0E’ in the
inverse transform. All multiplications are modulo x4+1,
which is represented by ‘1B’ in hexadecimal notation.
The encryption and decryption flows are very similar in
terms of operations performed, as illustrated in Fig. 1.
This property of the Rijndael algorithm can be used to
advantage when integrating both flows into a unified data

path, allowing a higher degree of resource sharing
between the two flows. The resulting data path is
illustrated in Fig. 2.

ININ

1

0

mode

K10

K0

01round(0)

10mode

ROT

10

MIX

01mode

Ki

OUT

PlainText / CipherText

CipherText / PlainText

mode

round(10)

round(10)

10

SUBBYTE_SUB

SHIFT_ROW

Figure 2. Combined encryption/decryption data path

The data flow for encryption/decryption is controlled by
multiplexers. The “mode” control signal indicates the
type of operation to be performed (‘0’ for encryption, ‘1’
for decryption), while the “round_sel” signal indicates
whether the current round is the first one (‘0’ for first
round, ‘1’ otherwise). In both modes, the pre-addition
(first XOR) is executed only during the first round. The
MIX_COLUMN stage is bypassed in the first round
during decryption and in the final round during
encryption. A different round key is used in the pre- and
post-addition stages depending on the current mode and
round. Since a single set of keys is used for both
encryption and decryption, a unified memory scheme has
been adopted; the round keys are stored in a single
memory bank, and are then retrieved in ascending order
(K0 to K10) during encryption and in descending order
(K10 to K0) during decryption. K0 is used in the pre-
addition stage during the first round of encryption, and
K10 during the first round of decryption. In the post-
addition stage, K1 to K10 are used during encryption, and
K9 to K0 are used during decryption.
The BYTE_SUB and SHIFT_ROW operations have been
enclosed in a dashed-line box to indicate that their

ordering is indifferent: SHIFT_ROW simply transposes
the bytes and has no effect on the byte value, while
BYTE_SUB operates on individual bytes.

KEY SCHEDULING
The key scheduling is responsible for the expansion of
the user-supplied key. Ten more 128-bit round keys are
generated from the initial key resulting in a total of 1408
bits. The round keys are stored in a 32x44 memory bank.
The key expansion algorithm is presented below.

Input : 128-bit user key organized in 16 bytes.
Output : Key memory (32x44 bits) containing the round
keys.
Algorithm : Key_Sched_original(user_key, key_mem)
for (i = 0; i < 4; i++)
 key_mem[i] := (user_key[4·i], user_key[4·i + 1],

 user_key[4·i + 2], user_key[4·i + 3]);
for (i = 4; i < 44; i++) {
 temp := key_mem[i –1];
 if (i mod 4 == 0)
 temp := BYTE_SUB(ROT_BYTE(temp))
 xor RCON[i /4];
 key_mem[i] := key_mem[i – 4] xor temp;
}

The “key_mem” variable denotes the memory bank of the
round keys, while “temp” is an intermediate variable. The
BYTE_SUB function has been described in the previous
section. The ROT_BYTE function performs a left byte-
rotation and RCON is a 4-byte constant.
Eight read accesses at the key memory are required in
order to generate a new 128-bit round key, to be used by
the algorithm core. These memory accesses have a severe
impact on the design performance. The following
modification to the algorithm eliminates this bottleneck.

Input : 128 bits wide user key organized in 16 bytes.
Output : Key memory (128x11 bits) containing the round
keys.
Algorithm : Key_Sched_modified(user_key, key_mem)
key_mem[0] := (user_key[0], user_key[1], user_key[2],
 user_key[3]);
previous_key := key_mem[0];
for (i = 1; i < 11; i++) {
 current_key[0]:=BYTE_SUB(ROT_BYTE
 (previous_key[3])) xor RCON[i];
 for (j = 1; j < 4; j++) {
 current_key[j] := current_key[j-1] xor
 previous_key[j];
 }
 previous_key := current_key;
 key_mem[i] := current_key;
}
In this modified version of the algorithm, quad-word
registers are used for the temporary storage of the
previous and the current keys (variables “previous_key”

and “current_key”, respectively). The key memory is
organized in 11 locations of 128-bit words. This
organization eliminates the need of read accesses for the
generation of a new round key, since all operations are
performed between these two registers. Hence, a
significant increase in operating speed is achieved.

III. MAPPING OF FUNCTIONAL MODULES
ONTO FPGA BLOCKS

The units described in section II are modeled in RTL
VHDL for the functional verification of the design. The
specific features of the target technology have been taken
into account in order to achieve an optimal design in
terms of speed and area utilization. Each functional block
has been thoroughly analyzed and mapped onto
technology primitives. The implementations were
targeted at the Xilinx Virtex FPGA device family [5].

MAPPING OF THE ALGORITHM CORE
The BYTE_SUB transformation: The Virtex devices
incorporate several 4096-bit memory blocks, which may
be used in various configurations. To take full advantage
of this feature an 8x512 Block SelectRAM+ [5]
configuration was selected, which allowed the storage of
both an encryption and decryption S-Box in a single
block of RAM.
The BYTE_SUB transformation can be applied on all 16
bytes of the input array in parallel for maximum speed.
This would require 16 copies of the S-Box, i.e. 16 blocks
of Block SelectRAM+. The smallest device in the Virtex
family that contains a minimum of 16 Block SelectRAM+
blocks is the XCV300. The Block SelectRAM+ memory
blocks are organized in two columns, one along each
vertical edge of the device.
We also experimented with a different configuration,
using Distributed SelectRAM+. In this configuration, the
S-Boxes were implemented using look-up tables (LUTs)
within the FPGA. Using the LUTs as 16x1 bit
synchronous single port RAM cells, an array of 8x32
LUTs would be required for each S-Box, plus an
additional amount of LUTs for multiplexing. The
complete set of 16 S-Boxes would then require a total of
4096 LUTs. The Distributed SelectRAM+ has
significantly lower access times compared to Block
SelectRAM+. The main drawback of this configuration,
however, was that the resource utilization in the device
would increase dramatically. Both configurations have
been implemented, tested and analyzed. The results are
presented and discussed in section V.
The Forward and Inverse SHIFT_ROW
transformation: Only routing resources are required for
the implementation of both the forward and inverse
transforms. However, a multiplexer is necessary for the
selection of the appropriate transform considering the
unified encryption/decryption data path of Fig. 2. A 256-

to-128 multiplexer is expected to utilize 64 LUTs, since
each LUT can be used as a 4-input function generator.
The Add_Round_Key Transformation: 128 LUTs are
required for the implementation, since it is only a bitwise
XOR of two 128-bit values.
The forward and inverse MIX_COLUMN
Transformations: Addition and subtraction of
polynomials in GF(28) corresponds to a bitwise XOR of
the coefficients of the same order. Multiplication of a
polynomial by x implies a left shift, modulo x4+1 (or ‘1B’
hex). This implies that the product of each of the
coefficients of c(x) and d(x) with a polynomial in GF(28),
can be implemented by computing the product of the
polynomial with ‘0001’, ‘0010’, ‘0100’ and ‘1000’ and
performing a bitwise XOR operation between the
appropriate results. The conditional reduction can be
carried out by a bit wise AND of each polynomial with
the value ‘1B’ hex, and then a bitwise XOR with the
shifted polynomial. A “Multiply-Byte” block has been
implemented that computes the products of all four
coefficients in parallel and then selects the appropriate
output using a multiplexer. Four copies of this block have
been used to multiply one column of the matrix in
parallel, while 16 copies are needed for the multiplication
of all four columns. The “Multiply-Byte” is a purely
combinational block that produces an 8-bit output from
an 8-bit input using simple AND, XOR and shift
operations.

MAPPING OF THE KEY SCHEDULING
Using the modified algorithm presented in section II, a
finite state machine is required for the implementation of
the key scheduling. The key memory can be realized
using either Distributed or Block SelectRAM+ modules
incorporated in the Virtex devices. Minimum area has
been the main goal in the implementation of the key
expansion unit. A block diagram of the design is
presented in Fig. 2.

CONTROL (FSM)
SBOX

(32 x 256)
BlockRAM

Key Memory
(128 x 11)
LUT RAM

128 bits 32 bits

User KeyControl

Figure 3. The key scheduling unit block diagram

The maximum-width/minimum-depth configuration
allowed using Block SelectRAM+ is 16x256. Thus, the
key memory would require 8 Block SelectRAM+ with a
total loss of approximately 30 Kbits. If the key memory is
mapped onto Distributed SelectRAM+, the expected
utilization is 128 LUTs, with 640 unused bits. The
Distributed SelectRAM+ solution is apparently more
attractive, also considering that its access time is half that
of the Block SelectRAM+.

However, in the case of the BYTE_SUB transformation,
needed in the key scheduling, a Distributed SelectRAM+
based approach would not be the optimal solution: 512
LUTs would be required to store the S-Boxes, plus some
additional logic for multiplexing. On the contrary, using
Block SelectRAM+, two 16x256 blocks would be
needed, thus saving on LUT and routing resources.
The generation of a round key is performed in five clock
cycles, hence 51 cycles are required to complete the key
scheduling.

IV. ARCHITECTURAL APPROACHES
All the implementations of the algorithm are based on a
single-round architecture. This architecture was selected
because it yields the best results in terms of throughput
and area utilization. The implementations were targeted at
the XCV400BG560 and the XVC1000BG560 parts of the
Xilinx Virtex family. The former device contains the
minimum number of Block SelectRAM+ required for the
realization of both the algorithm core and the key
scheduling. The latter device provides a much higher
amount of hardware and routing resources thus permitting
a more efficient placement and routing of the circuit. Both
the Rijndael core and the key scheduling were
implemented as stand-alone modules. They were also
combined to form the complete chip.
Timing analysis of a combinational implementation has
indicated increased delays in the INV_MIX_COLUMN
transformation when using Block SelectRAM+ for the
implementation of the BYTE_SUB function. To
overcome this drawback, three approaches with varying
levels of internal pipelining, in an effort to achieve the
highest possible throughput, have been tested:
1. Registered output of the INV_MIX_COLUMN block

(IMix_Reg_1).
2. Registered input and output of the

INV_MIX_COLUMN block (IMix_Reg_2).
3. Registered input and output of the

INV_MIX_COLUMN block plus an internal register
(IMix_Reg_3).

All the results are presented in section V, along with
comparisons with other implementations of the algorithm.

V. IMPLEMENTATION RESULTS AND
COMPARISONS

The implementations of the algorithm core and the key
scheduling have been realized with Xilinx Foundation
2.1. Constraints have been applied at the critical paths to
reduce routing delays. 16 Block SelectRAM+ have been
used for the BYTE_SUB transformation in the algorithm
core. The core implementation results regarding the
architectures discussed in section IV are summarized in
Tables I and II. These results concern the use of the
proposed architecture in ECB mode.

Table I: Core implementation results for the XCV400

Architecture

Slices

Clock
Freq.

(MHz)

Cycles
per

block

Throughput
(TP)

(Mbits/s)

TP/
#Slice
(TPS)*

IMix_Reg_1 1039 37.490 10 479.872 0.462
IMix_Reg_2 1039 56.013 10 716.966 0.690
IMix_Reg_3 1049 65.612 10 839.834 0.801

(*) The TPS metric was introduced in [2]

In the LUT RAM implementation of the BYTE_SUB
transformation, registers were added at the input and
output of the block, since it appeared to have the longest
combinational delay. As shown in Table II, the use of
LUT RAM results in significantly higher area
consumption. The low operating frequency is attributed to
the large number of slices used, which results in poor
routing.

Table II: Core implementation results for the XCV1000

Architecture

Slices

Clock
Freq.

(MHz)

Cycles
per

block

Throughput
(TP)

(Mbits/s)

TP/
#Slices
(TPS)

IMix_Reg_2 1039 58,913 10 754.086 0.726
IMix_Reg_2* 3643 44.906 10 574.797 0.157
IMix_Reg_3 1049 92,370 10 1182.336 1.127

IMix_Reg_2*: LUT RAM for the BYTE_SUB transformation

The highest operating frequency and throughput is
achieved by the implementation of the IMix_Reg_3
architecture for the XCV1000 part. These high results can
be attributed to the use of internal pipelining.
The key scheduling implementation parameters are shown
in Table III.

Table III: Key schedule implementation results
Key Schedule

Slices

Clock Frequency

(MHz)
Cycles per

block
XCV400 403 53,433 5

XCV1000 410 39,307 5

Compared to the key scheduling implementation in [4],
the area is reduced by a factor of 3. This is mainly due to
the use of Block SelectRAM+ for the BYTE_SUB
transformation. Finally, a comparison of the IMix_Reg_3
core implementation with the implementations of [2], [3]
and [4] is given in Fig. 4.

0

200

400

600

800

1000

1200

1400

Proposed
design

Elbirt et al Gaj et al Dandalis et al

Throughput (Mbit/s)
Normalized TPS [1000*TPS]
Slices

Figure 4. Comparison results for the Rijndael core

implementation on the Virtex family

The use of Block SelectRAM+ resulted in more efficient
area utilization, while the partitioning of the critical path
via the use of registers increased the operating frequency.
Thus, higher throughput has been achieved, with
minimum hardware usage.

VI. CONCLUSIONS
In this paper, a hardware design of the Advanced
Encryption Standard algorithm is presented. The design
has been implemented in FPGA technology targeting the
Xilinx Virtex family. The careful mapping of the
algorithm blocks on the available hardware resources has
yielded increased throughput and low area consumption.
In particular, a 50% increase in the throughput has been
achieved, compared to the next best results reported in the
literature, while the reduction in the area is about 36%.

REFERENCES
1 J. Daemen, V. Rijmen: “The Rijndael Block Cipher”,

AES Proposal, September 1999,
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.p
df

2 A. J. Elbirt, W. Yip, B. Chetwynd, C. Paar: “An
FPGA Implementation and Performance Evaluation
of the AES Block Cipher Candidate Algorithm
Finalists”, Proc. 3rd AES Conf., pp. 13 – 27, April
2000, New York, USA.

3 K. Gaj, P. Chodowiec: “Comparison of the hardware
performance of the AES candidates using
reconfigurable hardware”, Proc. 3rd AES Conf., pp.
pp. 40 – 54, April 2000, New York, USA.

4 A. Dandalis, V. K. Prasanna, J. D. P. Rolim: “A
comparative study of performance of AES final
candidates using FPGAs”, 3rd AES Conf., April
2000, New York, USA,
http://csrc.nist.gov/encryption/aes/round2/conf3/pap
ers/23-adandalis.pdf

5 Xilinx Inc.: “Virtex 2.5V Field Programmable Gate
Arrays”,

 http://www.xilinx.com/partinfo/ds003.pdf

