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ABSTRACT 
In this paper, an FPGA implementation of the 
Advanced Encryption Standard (AES) algorithm is 
presented. Several options regarding the use of on-
chip RAM and internal pipelining are examined. The 
proposed architecture combines high throughput with 
low area consumption.  

I. INTRODUCTION 
The rapid evolution of the e-business during the last two 
decades has augmented the need for security in 
information and networking systems. The role of single-
key cryptography has become even more prevalent in the 
infrastructure of secure systems. The recently announced 
Advanced Encryption Standard (AES) is expected to 
replace DES in the near future, in terms of cryptographic 
functionality. This introduces a small overhead for 
software platforms since the encryption module can be 
easily updated. However, applications with higher 
throughput requirements, require hardware support and in 
many cases special purpose ASICs for their efficient 
realization. The adoption of the new standard in the 
already installed hardware platforms is inevitable. 
Moreover, the limited amount of information and the lack 
of reports on cryptanalytic attacks regarding the new 
standard, as well as the small number of tested and 
verified hardware designs and implementations, increase 
the risk of an ASIC fabrication. On the other hand, Field 
Programmable Gate Array (FPGA) devices can provide 
the hardware performance required along with flexibility, 
low cost and small time-to-market margins. 
The incorporation of reconfigurable logic devices into 
modern hardware platforms requires an in-depth study of 
the specifications in terms of speed, cost and 
expandability with respect to the application. All these 
aspects are examined and discussed in this paper. In 
section II, an overview of the Rijndael algorithm is 
presented. Both the algorithm core and the key scheduling 
are analyzed. The internal architectural blocks are well 

defined, taking into account the hardware resources and 
specific features of the target devices. In section III, each 
unit is carefully mapped to the available hardware 
resources. Several architectural approaches are discussed 
in section IV, varying in terms of area, speed and 
throughput, for different FPGA parts. Section V includes 
implementation results and comparisons with previous 
work done in this area. 

II. THE RIJNDAEL ALGORITHM 
The Rijndael algorithm [1] is a proposal of Joan Daemen 
and Vincent Rijmen of Proton World and the University 
of Leuven respectively. The algorithm parameters 
discussed in this paper are: 

⇒ 128-bit data blocks 
⇒ 128-bit user provided key 
⇒ 10 rounds for encryption / decryption.  

The algorithm consists of two basic functional blocks: the 
core and the key scheduling. The core realizes the actual 
process of ciphering and de-ciphering, while the key 
scheduling is responsible for the expansion of the user-
supplied key and the generation of the intermediate round 
keys. 

THE ALGORITHM CORE 
The core consists of four discrete processing stages: 
⇒ The BYTE_SUB transformation, which is a non-

linear byte substitution operating on each of the data 
block bytes independently. 

⇒ The SHIFT_ROW transformation that mixes the 
data block on a byte level. 

⇒ The MIX_COLUMN transformation, which denotes 
a long word modulo multiplication over GF(28). 

⇒ The ROUND_KEY addition that corresponds to a 
bit wise XOR operation of the data block with the 
round key. 

Each stage has a 128-bit wide input and a 128-bit wide 
output. The structure of the algorithm core for one round 
of encryption/decryption is illustrated in Fig. 1. 
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Figure 1. Rijndael algorithm flow for (a) encryption, and 

(b) decryption 
 

The symbol ⊕ denotes the ADD_ROUND_KEY stage, 
which is a bitwise XOR between two 128-bit data sets. 
The round keys are provided by the key scheduling unit. 
The BYTE_SUB transformation requires two types of S-
Boxes (an 8x256 matrix), one for encryption and another 
for decryption. It is a non-linear byte substitution. 
In the Forward and Inverse SHIFT_ROW transformations 
the 128-bit data bus is transposed on a byte basis. 
Considering Data[1…16] as an array of 16 bytes, the 
SHIFT_ROW transformation derives a new array 
DataShiftRow according to the following algorithm: 
 
Input  : Data[1..16], 16 bytes array 
Output  : DataShiftRow [1..16], 16 bytes array 
Algorithm : Shift_Row(Data, DataShiftRow)  
for (i = 1; i < 17; i++) { 

If encryption  DataShiftRow[i] = Data[5·i mod 16];
 else DataShiftRow [i] = Data[13·i mod 16];        

} 
 

In the MIX_COLUMN transformation the 128-bit input is 
organized into a 4x4 byte matrix. Each column consists of 
four bytes, and it is considered a polynomial with 
coefficients in GF(28).  
Each column is multiplied by a fixed polynomial, which 
is c(x)=’03’x3+’01’x2+’01’x+’02’ in the forward 
transform, and d(x)=’0B’x3+‘0D’x2+‘09’x+‘0E’ in the 
inverse transform. All multiplications are modulo x4+1, 
which is represented by ‘1B’ in hexadecimal notation.  
The encryption and decryption flows are very similar in 
terms of operations performed, as illustrated in Fig. 1. 
This property of the Rijndael algorithm can be used to 
advantage when integrating both flows into a unified data 

path, allowing a higher degree of resource sharing 
between the two flows. The resulting data path is 
illustrated in Fig. 2. 

 

ININ

1

0

mode

K10

K0

01round(0)

10mode

ROT

10

MIX

01mode

Ki

OUT

PlainText / CipherText

CipherText / PlainText

mode

round(10)

round(10)

10

SUBBYTE_SUB

SHIFT_ROW

 
Figure 2. Combined encryption/decryption data path 
 

The data flow for encryption/decryption is controlled by 
multiplexers. The “mode” control signal indicates the 
type of operation to be performed (‘0’ for encryption, ‘1’ 
for decryption), while the “round_sel” signal indicates 
whether the current round is the first one (‘0’ for first 
round, ‘1’ otherwise). In both modes, the pre-addition 
(first XOR) is executed only during the first round.  The 
MIX_COLUMN stage is bypassed in the first round 
during decryption and in the final round during 
encryption. A different round key is used in the pre- and 
post-addition stages depending on the current mode and 
round. Since a single set of keys is used for both 
encryption and decryption, a unified memory scheme has 
been adopted; the round keys are stored in a single 
memory bank, and are then retrieved in ascending order 
(K0 to K10) during encryption and in descending order 
(K10 to K0) during decryption. K0 is used in the pre-
addition stage during the first round of encryption, and 
K10 during the first round of decryption. In the post-
addition stage, K1 to K10 are used during encryption, and 
K9 to K0 are used during decryption.     
The BYTE_SUB and SHIFT_ROW operations have been 
enclosed in a dashed-line box to indicate that their 



 

  

ordering is indifferent: SHIFT_ROW simply transposes 
the bytes and has no effect on the byte value, while 
BYTE_SUB operates on individual bytes. 

KEY SCHEDULING 
The key scheduling is responsible for the expansion of 
the user-supplied key. Ten more 128-bit round keys are 
generated from the initial key resulting in a total of 1408 
bits. The round keys are stored in a 32x44 memory bank. 
The key expansion algorithm is presented below. 
 
Input : 128-bit user key organized in 16 bytes. 
Output : Key memory (32x44 bits) containing the round 
keys. 
Algorithm : Key_Sched_original(user_key, key_mem) 
for (i = 0; i < 4; i++) 
 key_mem[i] := (user_key[4·i], user_key[4·i + 1],  

 user_key[4·i + 2], user_key[4·i + 3]);  
for (i = 4; i < 44; i++) { 
 temp := key_mem[i –1]; 
 if (i mod 4 == 0)  
 temp := BYTE_SUB(ROT_BYTE(temp))  
  xor RCON[i /4]; 
 key_mem[i] := key_mem[i – 4] xor temp; 
} 
 
The “key_mem” variable denotes the memory bank of the 
round keys, while “temp” is an intermediate variable. The 
BYTE_SUB function has been described in the previous 
section. The ROT_BYTE function performs a left byte-
rotation and RCON is a 4-byte constant. 
Eight read accesses at the key memory are required in 
order to generate a new 128-bit round key, to be used by 
the algorithm core. These memory accesses have a severe 
impact on the design performance. The following 
modification to the algorithm eliminates this bottleneck.  
 
Input : 128 bits wide user key organized in 16 bytes. 
Output : Key memory (128x11 bits) containing the round 
keys. 
Algorithm : Key_Sched_modified(user_key, key_mem) 
key_mem[0] := (user_key[0], user_key[1], user_key[2],  
              user_key[3]);  
previous_key := key_mem[0]; 
for (i = 1; i < 11; i++) { 
 current_key[0]:=BYTE_SUB(ROT_BYTE  
      (previous_key[3])) xor RCON[i]; 
 for (j = 1; j < 4; j++) { 
 current_key[j] := current_key[j-1] xor  
     previous_key[j]; 
 } 
 previous_key := current_key; 
 key_mem[i] := current_key; 
} 
In this modified version of the algorithm, quad-word 
registers are used for the temporary storage of the 
previous and the current keys (variables “previous_key” 

and “current_key”, respectively). The key memory is 
organized in 11 locations of 128-bit words. This 
organization eliminates the need of read accesses for the 
generation of a new round key, since all operations are 
performed between these two registers. Hence, a 
significant increase in operating speed is achieved. 

III. MAPPING OF FUNCTIONAL MODULES 
ONTO FPGA BLOCKS 

The units described in section II are modeled in RTL 
VHDL for the functional verification of the design. The 
specific features of the target technology have been taken 
into account in order to achieve an optimal design in 
terms of speed and area utilization. Each functional block 
has been thoroughly analyzed and mapped onto 
technology primitives. The implementations were 
targeted at the Xilinx Virtex FPGA device family [5].  

MAPPING OF THE ALGORITHM CORE 
The BYTE_SUB transformation: The Virtex devices 
incorporate several 4096-bit memory blocks, which may 
be used in various configurations. To take full advantage 
of this feature an 8x512 Block SelectRAM+ [5] 
configuration was selected, which allowed the storage of 
both an encryption and decryption S-Box in a single 
block of RAM.  
The BYTE_SUB transformation can be applied on all 16 
bytes of the input array in parallel for maximum speed. 
This would require 16 copies of the S-Box, i.e. 16 blocks 
of Block SelectRAM+. The smallest device in the Virtex 
family that contains a minimum of 16 Block SelectRAM+ 
blocks is the XCV300. The Block SelectRAM+ memory 
blocks are organized in two columns, one along each 
vertical edge of the device.  
We also experimented with a different configuration, 
using Distributed SelectRAM+. In this configuration, the 
S-Boxes were implemented using look-up tables (LUTs) 
within the FPGA. Using the LUTs as 16x1 bit 
synchronous single port RAM cells, an array of 8x32 
LUTs would be required for each S-Box, plus an 
additional amount of LUTs for multiplexing. The 
complete set of 16 S-Boxes would then require a total of 
4096 LUTs. The Distributed SelectRAM+ has 
significantly lower access times compared to Block 
SelectRAM+. The main drawback of this configuration, 
however, was that the resource utilization in the device 
would increase dramatically. Both configurations have 
been implemented, tested and analyzed. The results are 
presented and discussed in section V. 
The Forward and Inverse SHIFT_ROW 
transformation:  Only routing resources are required for 
the implementation of both the forward and inverse 
transforms. However, a multiplexer is necessary for the 
selection of the appropriate transform considering the 
unified encryption/decryption data path of Fig. 2. A 256-



 

  

to-128 multiplexer is expected to utilize 64 LUTs, since 
each LUT can be used as a 4-input function generator.   
The Add_Round_Key Transformation: 128 LUTs are 
required for the implementation, since it is only a bitwise 
XOR of two 128-bit values. 
The forward and inverse MIX_COLUMN 
Transformations: Addition and subtraction of 
polynomials in GF(28) corresponds to a bitwise XOR of 
the coefficients of the same order. Multiplication of a 
polynomial by x implies a left shift, modulo x4+1 (or ‘1B’ 
hex). This implies that the product of each of the 
coefficients of c(x) and d(x) with a polynomial in GF(28), 
can be implemented by computing the product of the 
polynomial with ‘0001’, ‘0010’, ‘0100’ and ‘1000’ and 
performing a bitwise XOR operation between the 
appropriate results. The conditional reduction can be 
carried out by a bit wise AND of each polynomial with 
the value ‘1B’ hex, and then a bitwise XOR with the 
shifted polynomial. A “Multiply-Byte” block has been 
implemented that computes the products of all four 
coefficients in parallel and then selects the appropriate 
output using a multiplexer. Four copies of this block have 
been used to multiply one column of the matrix in 
parallel, while 16 copies are needed for the multiplication 
of all four columns. The “Multiply-Byte” is a purely 
combinational block that produces an 8-bit output from 
an 8-bit input using simple AND, XOR and shift 
operations.  

MAPPING OF THE KEY SCHEDULING 
Using the modified algorithm presented in section II, a 
finite state machine is required for the implementation of 
the key scheduling. The key memory can be realized 
using either Distributed or Block SelectRAM+ modules 
incorporated in the Virtex devices. Minimum area has 
been the main goal in the implementation of the key 
expansion unit. A block diagram of the design is 
presented in Fig. 2. 
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Figure 3. The key scheduling unit block diagram 

The maximum-width/minimum-depth configuration 
allowed using Block SelectRAM+ is 16x256. Thus, the 
key memory would require 8 Block SelectRAM+ with a 
total loss of approximately 30 Kbits. If the key memory is 
mapped onto Distributed SelectRAM+, the expected 
utilization is 128 LUTs, with 640 unused bits. The 
Distributed SelectRAM+ solution is apparently more 
attractive, also considering that its access time is half that 
of the Block SelectRAM+.  
 

However, in the case of the BYTE_SUB transformation, 
needed in the key scheduling, a Distributed SelectRAM+ 
based approach would not be the optimal solution: 512 
LUTs would be required to store the S-Boxes, plus some 
additional logic for multiplexing. On the contrary, using 
Block SelectRAM+, two 16x256 blocks would be 
needed, thus saving on LUT and routing resources.  
The generation of a round key is performed in five clock 
cycles, hence 51 cycles are required to complete the key 
scheduling. 

IV. ARCHITECTURAL APPROACHES 
All the implementations of the algorithm are based on a 
single-round architecture. This architecture was selected 
because it yields the best results in terms of throughput 
and area utilization. The implementations were targeted at 
the XCV400BG560 and the XVC1000BG560 parts of the 
Xilinx Virtex family. The former device contains the 
minimum number of Block SelectRAM+ required for the 
realization of both the algorithm core and the key 
scheduling. The latter device provides a much higher 
amount of hardware and routing resources thus permitting 
a more efficient placement and routing of the circuit. Both 
the Rijndael core and the key scheduling were 
implemented as stand-alone modules. They were also 
combined to form the complete chip.  
Timing analysis of a combinational implementation has 
indicated increased delays in the INV_MIX_COLUMN 
transformation when using Block SelectRAM+ for the 
implementation of the BYTE_SUB function. To 
overcome this drawback, three approaches with varying 
levels of internal pipelining, in an effort to achieve the 
highest possible throughput, have been tested: 
1. Registered output of the INV_MIX_COLUMN block 

(IMix_Reg_1). 
2. Registered input and output of the 

INV_MIX_COLUMN block (IMix_Reg_2). 
3. Registered input and output of the 

INV_MIX_COLUMN block plus an internal register 
(IMix_Reg_3). 

All the results are presented in section V, along with 
comparisons with other implementations of the algorithm. 

V. IMPLEMENTATION RESULTS AND 
COMPARISONS 

The implementations of the algorithm core and the key 
scheduling have been realized with Xilinx Foundation 
2.1. Constraints have been applied at the critical paths to 
reduce routing delays. 16 Block SelectRAM+ have been 
used for the BYTE_SUB transformation in the algorithm 
core. The core implementation results regarding the 
architectures discussed in section IV are summarized in 
Tables I and II. These results concern the use of the 
proposed architecture in ECB mode. 
 



 

  

Table I: Core implementation results for the XCV400  

Architecture 
 

Slices 
 

Clock 
Freq. 

(MHz) 

Cycles 
per 

block 

Throughput
(TP) 

(Mbits/s) 

TP/ 
#Slice 
(TPS)* 

IMix_Reg_1  1039 37.490 10 479.872 0.462 
IMix_Reg_2 1039 56.013 10 716.966 0.690 
IMix_Reg_3 1049 65.612 10 839.834 0.801 

(*) The TPS metric was introduced in [2]  

In the LUT RAM implementation of the BYTE_SUB 
transformation, registers were added at the input and 
output of the block, since it appeared to have the longest 
combinational delay. As shown in Table II, the use of 
LUT RAM results in significantly higher area 
consumption. The low operating frequency is attributed to 
the large number of slices used, which results in poor 
routing. 

Table II: Core implementation results for the XCV1000  

Architecture 
 

Slices 
 

Clock 
Freq. 

(MHz) 

Cycles 
per 

block 

Throughput 
(TP) 

(Mbits/s) 

TP/ 
#Slices 
(TPS) 

IMix_Reg_2  1039 58,913 10 754.086 0.726 
IMix_Reg_2*  3643 44.906 10 574.797 0.157 
IMix_Reg_3 1049 92,370 10 1182.336 1.127 

IMix_Reg_2*: LUT RAM for the BYTE_SUB transformation 
 
The highest operating frequency and throughput is 
achieved by the implementation of the IMix_Reg_3 
architecture for the XCV1000 part. These high results can 
be attributed to the use of internal pipelining.  
The key scheduling implementation parameters are shown 
in Table III. 

Table III: Key schedule implementation results 
Key Schedule 

 
Slices 

 
Clock Frequency 

(MHz) 
Cycles per 

block 
XCV400 403 53,433 5 

XCV1000 410 39,307 5 
 
Compared to the key scheduling implementation in [4], 
the area is reduced by a factor of 3. This is mainly due to 
the use of Block SelectRAM+ for the BYTE_SUB 
transformation. Finally, a comparison of the IMix_Reg_3 
core implementation with the implementations of [2], [3] 
and [4] is given in Fig. 4.  
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Figure 4. Comparison results for the Rijndael core 

implementation on the Virtex family 

The use of Block SelectRAM+ resulted in more efficient 
area utilization, while the partitioning of the critical path 
via the use of registers increased the operating frequency. 
Thus, higher throughput has been achieved, with 
minimum hardware usage. 

VI. CONCLUSIONS 
In this paper, a hardware design of the Advanced 
Encryption Standard algorithm is presented. The design 
has been implemented in FPGA technology targeting the 
Xilinx Virtex family. The careful mapping of the 
algorithm blocks on the available hardware resources has 
yielded increased throughput and low area consumption. 
In particular, a 50% increase in the throughput has been 
achieved, compared to the next best results reported in the 
literature, while the reduction in the area is about 36%. 
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