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1. Introduction  
Because of Proportional Integral and Derivative (PID) controller’s widespread 

use in process industries, the problem of tuning PID controller parameters in single 

input single output (SI/SO) systems is widespread, too (Ziegler and Nichols,1942; 

Cohen and Coon, 1953; Lopez et al., 1967; Smith et al.,1975; Riviera wt al., 1986; 

Chien and Fruehauf, 1990; Tyreus and Luyben, 1992; Sung et al.,1995; Lee et 

al.,1996). One of the methods for Proportional Derivative and Integral controller 

(PID) parameter tuning is the internal model control and PID (IMC-PID) tuning 

method, which is based on keeping the controlled variable response close to the 

desired closed-loop response (Riviera et al., 1986; Morari and Zafiriou, 1989). An 

important advantage of this method is that the closed-loop time constant, which is the 

same as the internal model control (IMC) filter time constant, provides convenient 

tuning parameter to adjust the speed and robustness of the closed-loop system. 

However, this method gives derivative and integral time constants which do not 

depend on the closed-loop system time constant. Also, this method can not be used 

for every process model. Therefore; Lee and Park (1998) have made a new approach 

to IMC-PID tuning method and gained the PID parameters for general models by 

approximating the ideal controller with a Maclaurin series in s domain. With this 

method, controller parameters become dependent on the closed-loop time constant 

and the closed-loop response becomes better. 

Moreover, when disturbance to the control variable or non-linear final control 

element are included in the system, cascade control can be preferred in order to 

improve the closed-loop response. Cascade control is used to improve the dynamic 

response of a feedback control loop to disturbances in the manipulated variable 

(Krishnaswamy, Jha and Deshpande; 1990). 

      There is information in the published literature on the tuning methods of cascade 

controllers (Jury, 1973; Edger et al., 1982; Krishnaswamy, 1990), but it is rather 

limited. Also, these methods tune the inner loop first and the outer loop, containing 

the inner loop, later. Lee and Park (1998) proposed a new method, finding the ideal 

controller that gives the desired closed-loop response and then finding the PID 

approximation of the ideal controller by Maclaurin series. The method, which can be 

applied to any open loop stable processes, enables us to tune the PID controller both 

for the inner loop and the outer loop simultaneously. 

 



 2

      It is important to decide when to use cascade control, because it requires at least 

two measuring elements instead of one. According to Krishnaswamy, Jha and 

Deshpande (1990), cascade control makes progress about ITAE with PI-P controllers 

if 

• The inner loop is faster than or as fast as the outer loop 

• The disturbance effects the inner loop 

      In the article of Krishnaswamy, Jha and Deshpande (1990), cascade controller 

type is chosen as PI-P because it has only three tuning parameters and gives a good 

performance. Also, the systems are treated as FOPDT systems, since complex 

dynamic processes can be represented by FOPDT systems. 

      Also, Aström (1995) says that cascade control can be used when there are several 

measurement signals and one control variable. It is particularly useful when there are 

significant dynamics, e.g., long dead times or long time constants, between control 

variable and the process variable. Tighter control can be achieved by using an 

intermediate measured signal that responds faster to the control signal. 

      In this study, cascade and single feedback control structures are compared with 

each other and PID controller tuning method to obtain desired closed loop responses 

for cascade control systems (Lee and Park, 1998). Moreover, PID controller 

parameter calculations are detailed for both cascade and feedback control systems. 

Also, simulation studies are made to compare these two structures. In addition, both 

cascade and single feedback controls are applied to a real system, and the results are 

also compared with each other. In consequence, it is observed that cascade control is 

better in disturbance rejecting and it is usually better in acquiring good temporary 

system response. 

      In the second part; how the tuning algorithm for PID is obtained, is explained, 

simulations are made and comments are given for the simulation results. In the third 

part; how the tuning algorithm for general process models of cascade control systems 

is obtained, is explained, a parameter tuning example for first order plus dead time 

(FOPDT) systems is made, simulations are performed and comments are given for 

the simulation results. Fourth part includes the derivation of the digital controller, 

obtaining its parameters, simulation studies in z-domain, comments on simulation 

studies, period of realizing the control systems and information about application 

process. Fifth part is composed of the conclusion of the study.  
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2. PID Controller Tuning for Desired Closed-Loop Responses 

      In this part; the method of PID tuning for closed-loop responses for SI/SO 

systems (Lee and Park, 1998) is analyzed, the way of obtaining controller parameters 

is detailed and simulation studies are made. 

 

2.1 Derivation of General Tuning Algorithm for PID Controllers 

      The block diagram of the system is given in Figure 2.1. In this control system, 

process is considered to be stable and the disturbance is considered to affect as an 

input of the process. The reason for choosing the disturbance as an input of the 

process is to form a disturbance that adds new dynamics to the process. It is harder to 

cope with this type of disturbance.  

 
Figure 2.1: Single-Feedback Control System 

 

      The form of the stable process model is considered as; 

 

)()()( spspsG Am=                                                      (2.1) 

 

      In Eq. 2.1 pm(s) is the minimum phase portion of the model which can be 

inverted by the controller and pA(s) is the non-minimum phase portion of the model, 

which can not be inverted by the controller because it has right-plane zeros and/or 

dead times. 

Usually pA(s) is chosen in the form 
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because this form lets pA(0)=1, which is the necessary condition for the controlled 

variable to track its set point. 

      Since pA(s) is a portion that can not be inverted by the controller, the desired 

closed-loop response can be selected as 
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where the term functions as a filter with an adjustable time constant λ and an order r 

that is chosen to make the controller realizable. 

      If the required calculations are made, the ideal controller is found in the form 
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where q is called the IMC controller and it is given in the form  

 

            r
m sspq )1/()(1 += − λ                                                 (2.5) 

 

      Although the ideal controller in Eq. 2.4 is physically realizable, it is not in the 

standard PID form. So, the right PID parameters have to be found that makes PID 

controller behave like the ideal controller. 

      Because of the structure of pA(s), pA(0)=1. So, the desired closed-loop response 

yields 1 at s=0, which means it has no steady state error. Therefore, the ideal 

controller must have an integral term to get rid of steady state error. The ideal 

controller can be represented as 

 

ssfGc /)(=                                                                   (2.6) 

 

      f(s) is the part of Gc that has no poles at zero, because its denominator 

( ssps A
r /))()1(( −+λ ) or the derivative of its denominator never becomes zero at  
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s=0 if r is greater than zero. So, Gc can be expanded in a Maclaurin series in s in the 

form 
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where it has infinite number of elements. Since this type of controller is not 

realizable and the low, middle frequencies are more important than high frequencies, 

this controller can be approximated to the standard PID given by 
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where 
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      In order to obtain the PID controller parameters, we calculate the derivatives of 

the denominator of f(s) at s=0 first. 
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      Then, the function f(s) and its first and second derivatives are evaluated at s=0. 
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      If we want the FOPDT process model in Eq. 2.12 behave like the reference 

trajectory in Eq. 2.13 and the detailed calculations are made, the controller 

parameters below are obtained. The detailed calculations are represented in 

Appendix A. 
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      If we want the SOPDT process model in Eq. 2.15 behave like the reference 

trajectory in Eq. 2.13 and the detailed calculations are made, the controller 

parameters below are obtained. 
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2.2 Simulation Study 

       For the simulation study, two processes 
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are chosen. If the system in Eq. 2.17.1 is modeled as FOPDT system (Aström, 1995), 

the new model of the system is obtained as in the Eq. 2.18. The detailed calculations  

are represented in Appendix B. 
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      If the systems in Eq. 2.17.2 and 2.18 are serially connected, process model is 

evaluated as 
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and the controller parameter calculations are made with respect to parameters of the 

system in Eq. 2.19, but the systems in Eq. 2.17.1 and 2.17.2 are used in simulation 

study. Also, the controller parameters are calculated with the help of the program, 

prepared in MATLAB. This program is represented in Appendix C.   

(i) When we choose the desired closed-loop system like 
19.0
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+
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s
e

R
C s

, the 

controller parameters are evaluated as Kc=2.0516, Ti=3.6597, 

Td=0.7558. 

 

      In Figure 2.2, the simulation block diagram of the single-feedback control system 

is shown with a unit step input as a reference and a step input with a magnitude of 

0.5 as disturbance. Also, the output of the system in Figure 2.2 is shown in Figure 

2.3 and the control signal of the same system is shown in Figure 2.4. 
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Figure 2.2: Simulation Diagram of the System  

 

 

 
Figure 2.3: Unit Step Response of the Controlled System 

 

 

 
Figure 2.4: Control Signal 

 

 

 

(ii) When we choose the desired closed-loop system like 
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controller parameters are evaluated as Kc=1.0637, Ti=3.5482, 

Td=0.6703. 
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      The output of the system in Figure 2.2 with the PID parameters given above is 

shown in Figure 2.5 and the control signal of the same system is shown in Figure 2.6. 

 

 

 
Figure 2.5: Unit Step Response of the Controlled System 

 

 

Figure 2.6: Control Signal 

 

2.3. Comments on PID Parameter Tuning Method 

      First of all, the method enables us to tune PID controller by choosing only λ. As 

it can be seen from the simulation outputs; when the time constant of the desired 

closed-loop system becomes less, the overshoot of the system increases since the 

gain of the PID controller becomes greater. On the other hand; when the time 

constant of the desired closed-loop system becomes less, the disturbance effect on 

the system output becomes less because the system response to the disturbance is 

adjusted faster. Although disturbance or overshoot is adjusted individually, we can 

not adjust two of them simultaneously with this method. We should choose the 

optimal λ value in order to obtain the output we want. 
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3. PID Controller Tuning To Obtain Desired Closed-Loop Responses for 

Cascade Control Systems 

      In this part; the method of PID tuning to obtain desired closed-loop responses for 

cascade control systems (Lee and Park, 1998) is analyzed, the way of obtaining 

controller parameters is detailed and simulation studies are made. 

 

3.1 Derivation of Tuning Rules for General Process Models 

 

 
Figure 3.1: Block Diagram of the Cascade Control System 

 

      In Figure 3.1, Gc1 and Gc2 are the controllers of the primary loop and secondary 

loop respectively. Also, Gp1 and Gp2 are the processes of the primary loop and 

secondary loop respectively. The outer loop is called primary loop, because outer 

loop deals with the primary measured signal. L2 is the disturbance. 

      The closed-loop transfer functions of the primary and secondary loops are 
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      For this system, Gc2 and Gc1 should be tuned in order to satisfy set point value R1 

and regulate the disturbance L2. 
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(i) Secondary Controller’s Design 

      Our aim while designing the secondary controller is to reject the disturbance as 

fast as possible. Therefore, C2 should trace its set point as quickly as possible but not 

with much overshoot and any oscillation.  

      If the stable process model of the secondary loop is chosen as 
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where p2m(s) is the minimum phase portion of the process model that can be inverted 

by the controller and p2A(s) is the non-minimum phase portion of the model that can 

not be inverted by the controller because it has right plane zeros or delay times. 

p2A(s) can be given in the form 
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      As it can be seen from the Eq. 3.4, p2A(0)=1. This indicates that p2A(s) traces its 

set point without steady state error. Since this portion can not be inverted with a 

controller, this form is an advantage for the secondary system to trace its set point. 

      Desired closed-loop response of the secondary system is given as 
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where λ2 is the time constant of the desired closed-loop and r2 is the parameter to 

make the controller realizable. Also 2
2 )1/(1 rs +λ  structure is the IMC filter with 

adjustable parameters. 
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      As long as the secondary process model and the secondary desired closed-loop 

response are known, the controller Gc2 can be calculated. After all the required 

calculations, it can be given as 
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      Because of the structure of p2A(s), p2A(0)=1. So, the desired closed-loop response 

in Eq. 3.5 yields 1 at s=0, which means it has no steady state error.  

 

      Therefore, the ideal controller must have an integral term to get rid of steady state 

error. The ideal controller can be represented as 

 

ssfGc /)(22 =                                                            (3.7)   

          

      f2(s) is the part of Gc2 that has no poles at zero, because its denominator 

( ssps A
r /))()1(( 2

2
2 −+λ ) or the derivative of its denominator never becomes zero at 

s=0 if r is greater than zero. So, Gc2(s) can be expressed in Maclaurin series in the 

form 

⎥
⎦

⎤
⎢
⎣

⎡
+++= ...

2
)0()0()0(1)(

2''
2'

222
sfsff

s
sGc                                   (3.8)      

 

      The controller in Eq. 3.7 and 3.8 are the same, as long as the controller in Eq. 3.8 

includes all the terms but in practice this can not be implemented. Due to this 

constraint and the low importance of high frequency terms, only the first three terms 

of the controller in Eq. 3.8 is taken into consideration. The controller is given in the 

form  
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      From this equation, the controller parameters can be expressed as 
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(ii) Primary Controller’s Design 

      If it can be assumed that the secondary closed loop response is the same as the 

secondary desired closed-loop response, primary desired closed-loop response can be 

given as 
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and the process model of the outer loop can be given as 
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      If the primary process model includes invertible and non-invertible portions in 

the form 
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and the primary desired closed-loop response is chosen as 
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the transfer function of the controller can be given as 
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      With the same approximation made for the secondary loop controller, Gc1 can be 

also written as a PID controller. 
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3.2 Tuning Method Example for FOPDT Systems 

      Generally, first-order plus dead time (FOPDT) models are used as approximate 

models for the process models in industry, so if the models of processes are chosen 

as 

1
)(

2

2
2

2

+
=

−

s
eKsG

s

p τ

θ

                                                  (3.16.1) 

1
)(

1

1
1

1

+
=

−

s
eKsG

s

p τ

θ

                                                   (3.16.2) 

 

it can be seen that Gp2 can be decomposed as 
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      Also, the desired closed-loop response of the secondary system can be specified 

as 
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      According to these equations, ideal controller can be given as 
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      This ideal controller of the inner loop can be converted to a PID controller with a 

Maclaurin series approximation and the parameters of PID controller can be 

evaluated from calculation made during the conversion period.  
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The detailed calculations made for these period are given at Appendix D. At the end 

of the conversion period the PID parameters of the inner loop are obtained as 

 

)(
)(2

222

22

2
2

2

2 θλ
θλ

θτ

+
+

+
=

K
K c                                     (3.20.1) 

)(2 22

2
2

22 θλ
θττ
+

+=I                                          (3.20.2) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+

−
+

=

)(2

3
)(6

22

2
2

2

2

22

2
2

2

θλ
θτ

θ
θλ

θτ D                               (3.20.3) 

       

 

      Moreover, the model of outer loop is given as 
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      Eq. 3.21 can be decomposed as 
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      When the desired closed-loop response is specified as 
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the ideal controller can be given as  
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      Similarly; when the approximation is made for the outer loop’s ideal controller, a 

PID controller and its parameters can be evaluated as given below. The detailed 

calculations for this period are given in Appendix E. 
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Table 1: Results of the Tuning Rules for FOPDT and SOPDT Systems 

process process model reference trajectory 
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      The results of the tuning method are summarized for FOPDT and SOPDT models 

in Table 1. These controllers can be used for any cascade mode. For instance, when 

proportional controller is tuned, only the Kc parameter is used and the others are not 

used. This is an advantage of the tuning method. 
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3.3 Simulation Studies 

      In this part, various simulations are made in order to analyze the advantages of 

cascade control systems. For the simulation study, the system model of the inner loop 

is chosen as the system model represented in Eq. 2.17.2 and the system of the outer 

loop is chosen as the system represented in Eq. 2.17.1, but the parameter tuning of 

the outer system is made for the approximate model of the outer system as 

represented in Eq. 2.18. These two systems are tried to be controlled both with 

cascade and single-feedback control systems. During the simulation period, different 

types of controllers and different λ values are tried. The consequent results are 

compared with each other. Figure 3.2 represents the simulation diagram used for 

comparision. 

 

 
Figure 3.2: Simulation Block Diagram of the Single-Feedback and Cascade Control Systems 

 

      In Figure 3.2, the simulation block diagrams of the single-feedback and cascade 

control systems are shown with a unit step input as reference values and step inputs 

with a magnitude of 0.5 as disturbances. Various simulations are made by modifying 

the values of the desired-closed loop time constant for the single-feedback system 

(λ), the inner loop (λ2) and the outer loop (λ1). Also, controller types are modified for 

single-feedback and cascade control systems. In order not to make the systems have 

steady state error, single-feedback controller is chosen as PID or PI and outer loop 

controller of the cascade control system is chosen as PID or PI controller. Moreover, 
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 tables are given below the unit step responses of the systems to represent the percent 

overshoot, settling time and ITSE values that belongs to each control system. 

 

a) Single-feedback controller is chosen as PID, λ=0.9, λ2=0.5 and λ1 =2.5 

 

(i) Cascade Control System: When outer loop controller is PID and inner 

loop controller is PI controller for cascade control system 
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Figure 3.3: Unit Step Responses of the Single-Feedback and Cascade Control Systems (PID-PI) 

 

Table 2: Percent Overshoot, Settling Time and ITSE Values for the System Responses  

  ITSE  

Overshoot Settling Time Step Response Disturbance 

Cascade Cont. %2 12.5s 3.9 0.1018 

Single-Feedback 

Contr. 

%37.2 21.6s 4.437 0.5814 
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          (ii) Cascade Control System: When outer loop controller is PID and inner 

loop controller is PID controller for cascade control system 
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Figure 3.4: Unit Step Responses of the Single-Feedback and Cascade Control Systems (PID-PID) 

 

Table 3: Percent Overshoot, Settling Time and ITSE Values for the System Responses 

  ITSE  

Overshoot Settling Time Step Response Disturbance 

Cascade Cont. %2.7 12.62s 3.939 0.1037 

Single-Feedback 

Contr. 

%37.3 21.65s 4.446 0.5823 

 

              (iii) Cascade Control System: When outer loop controller is PI and 

inner loop controller is PI controller for cascade control system 

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time(s)

Single-Feedback
Cascade

 
Figure 3.5: Unit Step Responses of the Single-Feedback and Cascade Control Systems (PI-PI) 
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Table 4: Percent Overshoot, Settling Time and ITSE Values for the System Responses 

    ITSE  

Overshoot Settling Time Step Response Disturbance 

Cascade Cont. %10.5 13.84s 4.293 0.151 

Single-Feedback 

Contr. 

%37.1 21.65s 4.432 0.5811 

 

                (iv) Cascade Control System: When outer loop controller is PI and 

inner loop controller is PID controller for cascade control system 
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Figure 3.6: Unit Step Responses of the Single-Feedback and Cascade Control Systems (PI-PID) 

 

Table 5: Percent Overshoot, Settling Time and ITSE Values for the System Responses 

  ITSE  

Overshoot Settling Time Step Response Disturbance 

Cascade Cont. %11.1 13.905s 4.363 0.1539 

Single-Feedback 

Contr. 

%37.3 21.65s 4.45 0.5817 
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b) Single-feedback controller is chosen as PID, λ=2.5, λ2=0.5 and λ1 =2.5 

  

(i) Cascade Control System: When outer loop controller is PID 

and inner loop controller is PI controller for cascade control 

system 
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Figure 3.7: Unit Step Responses of the Single-Feedback and Cascade Control Systems (PID-PI) 

 

Table 6: Percent Overshoot, Settling Time and ITSE Values for the System Responses 

  ITSE  

Overshoot Settling time Step Response Disturbance 

Cascade Cont. %2 12.5s 3.897 0.1018 

Single-Feedback 

Contr. 

%4 12s 4.176 1.604 
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(ii) Cascade Control System: When outer loop controller is PID 

and inner loop controller is PID controller for cascade control 

system 
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Figure 3.8: Unit Step Responses of the Single-Feedback and Cascade Control Systems (PID-PI) 

 

Table 7: Percent Overshoot, Settling Time and ITSE Values for the System Responses 

  ITSE  

Overshoot Settling Time Step Response Disturbance 

Cascade Cont. %2.7 12.5s 3.935 0.1038 

Single-Feedback 

Contr. 

%3.9 12s 4.175 1.605 

 

(iii) Cascade Control System: When outer loop controller is PI and inner 

loop controller is PI controller for cascade control system 
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Figure 3.9: Unit Step Responses of the Single-Feedback and Cascade Control Systems (PI-PI) 
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Table 8: Percent Overshoot, Settling Time and ITSE Values for the System Responses 

  ITSE  

Overshoot Settling Time Step Response Disturbance 

Cascade Cont. %11.1 13.88s 4.29 0.1509 

Single-Feedback 

Contr. 

%4 12s 4.175 1.603 

 

(iv) Cascade Control System: When outer loop controller is PI and inner 

loop controller is PID controller for cascade control system 
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Figure 3.10: Unit Step Responses of the Single-Feedback and Cascade Control Systems (PI-PID) 

 
Table 9: Percent Overshoot, Settling Time and ITSE Values for the System Responses 

  ITSE  

Overshoot Settling Time Step Response Disturbance 

Cascade Cont. %11.15 13.88s 4.358 0.1538 

Single-Feedback 

Contr. 

%4 12s 4.174 1.605 
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c) Single-feedback controller is chosen as PI, λ=2.5, λ2=0.5 and λ1 =2.5 

 

         (i) Cascade Control System: When outer loop controller is PID and inner 

loop controller is PI controller for cascade control system 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.11: Unit Step Responses of the Single-Feedback and Cascade Control Systems (PID-PI) 

 

Table 10: Percent Overshoot, Settling Time and ITSE Values for the System Responses 

  ITSE  

Overshoot Settling Time Step Response Disturbance 

Cascade Cont. %2.1 12.4s 3.898 0.1018 

Single-Feedback 

Contr. 

%15.5 14.3s 4.984 1.826 

 

(ii) Cascade Control System: When outer loop controller is PID and inner 

loop controller is PID controller for cascade control system 
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Figure 3.12: Unit Step Responses of the Single-Feedback and Cascade Control Systems (PID-PID) 
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Table 11: Percent Overshoot, Settling Time and ITSE Values for the System Responses 
  ITSE  

Overshoot Settling Time Step Response Disturbance 

Cascade Cont. %2.7 12.57s 3.936 0.1038 

Single-Feedback 

Contr. 

%14.95 14.3s 4.983 1.826 

 

(iii) Cascade Control System: When outer loop controller is PI and inner 

loop controller is PI controller for cascade control system 
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Figure 3.13: Unit Step Responses of the Single-Feedback and Cascade Control Systems (PI-PI) 

 

Table 12: Percent Overshoot, Settling Time and ITSE Values for the System Responses 

  ITSE  

Overshoot Settling Time Step Response Disturbance 

Cascade Cont. %10.46 13.83s 4.289 0.1509 

Single-Feedback 

Contr. 

%15.3 14.31s 4.982 1.827 
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(iv) Cascade Control System: When outer loop controller is PI and inner 

loop controller is PID controller for cascade control system 
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Figure 3.14: Unit Step Responses of the Single-Feedback and Cascade Control Systems (PI-PID) 

 

 

 

Table 13: Percent Overshoot, Settling Time and ITSE Values for the System Responses 

  ITSE  

Overshoot Settling Time Step Response Disturbance 

Cascade Cont. %11.1 13.9s 4.358 0.1539 

Single-Feedback 

Contr. 

%15 14.3s 4.984 1.827 

 

 

3.4 Comments on Cascade Controller Tuning Method 

      As it is seen from the simulations presented in the previous section, in single-

feedback control; when λ value is increased, the temporary system response 

improves but the disturbance effect on system response increases. When λ value is 

decreased, the disturbance effect on system response decreases but the temporary 

system response becomes worse. For example, it can be observed that temporary 

system response in Figure 3.7 is better than the temporary system response in Figure 

3.3 and the rejection of disturbance in Figure 3.3 is better compared to Figure 3.7.  

      In cascade control, it is possible to select λ1 and λ2 to improve temporary system 

response and decrease the disturbance effect simultaneously. For this case, the unit 
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step system responses in Figure 3.13 can be given as examples that indicate the better 

performance of cascade control compared to single-feedback control. Since λ value 

of the single feedback control system is given as 2.5, better performance is expected 

in temporary system response of the single feedback control system. However; as it 

can be seen from Figure 3.13, the disturbance rejection and the temporary system 

response performance of cascade controller is better compared to single feedback 

controller. The aim of the inner loop controller is to reject the disturbance effect, so 

the system in the inner loop should trace its reference as fast as possible. In order to 

make the inner loop faster λ2 is usually chosen as a small value. This small value 

makes Kc2 greater. Therefore, it is possible for the outer system to have overshoot or 

to make oscillation. This state is generally tried to be rejected by selecting λ1 close to 

τ1 so that Kc1 becomes smaller.  

      Therefore, λ1 and λ2 are selected as 2.5 and 0.5 respectively in simulations. Outer 

loop controllers are selected as PID or PI, inner loop controllers are selected PID or 

PI and single-feedback controllers are selected as PID or PI controllers to observe the 

various system outputs. Outer loop controller and single-feedback controller are 

chosen in the form that includes integrator, not to cause steady state error in system 

outputs. Also, inner loop controller types are selected as to make the inner system 

trace its reference faster.  

      In consequence, the separate ITSE values for disturbance and step response in 

simulation study part represents that cascade control makes progress for disturbance 

effect and it generally improves temporary system response. 

 

 

4. Application 

 

      4.1 Derivation of Digital Controller 

 

      The transfer of  PID controller in z-domain can be given as 

 

)1.(
1

1.)( 1
1

−
− −+

−
+= z

T
KT

zT
KTKzG

s

D

i

s
PID                                 (4.1) 

 



 29

      Here, backward integration method is used for the conversion of PID controller’s 

integral term.  

      If the error signal (e) is the input of the controller and u(t) is the control signal, 

the difference equation of the controller is evaluated as 

 

)(.)( keKkup =                                                               (4.2) 
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)()()()( kukukuku DIP ++=                                                   (4.5) 

 

      After obtaining the transfer function of the digital controller, the controller can be 

realized with a computer or PLC. An important constituent of digital PID controller 

is the sampling period. As a matter of fact, a proper selection of sampling period for 

a discrete time control system is very important. The sampling period does not only 

determine the time interval in which the controller is active but it also alters the 

controller parameters. The sampling period in these simulations is selected as 50ms 

because this value makes the controller sufficiently fast not to cause information lost. 

In order to calculate the digital controller parameters of cascade control system, a 

program is prepared in MATLAB. This program is represented in Appendix F. Also, 

Appendix C includes digital controller parameter calculation for single-feedback 

control system. 

 

4.2 Simulation Study in z-domain 

      In this section, using the models of the systems that will be used for real time 

application, simulations have been performed. 
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Figure 4.1: Simulation Block Diagram for Digital Control 

 

      In Figure 4.1, simulation diagram for digital cascade and single-feedback control 

systems are represented. In cascade control system, the controllers of inner and outer 

loops are chosen as PI controllers because this combination of controllers makes 

progress despite its simple structure when compared to PID-PID structure. In these 

simulations λ1 and λ2 are selected as 2.5 and 0.5 respectively.  In single-feedback 

control system controller is first chosen as PI and then PID controller. The following 

results are obtained.  

 

(i) When cascade controllers are PI-PI controllers and single feedback 

controller is PID controller with λ=2.5 
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Figure 4.2: Unit Step Responses of the Cascade (PI-PI) and Single-Feedback (PID) Control Systems 
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Table 14: ITSE Values of the Systems in Figure 4.2 for Step Response and Disturbance  

ITSE  

Step Response Disturbance 

Cascade Cont. 4.135 0.1451 

Single-Feedback Contr. 3.549 1.601 

 

(ii) When cascade controllers are PI-PI controllers and single feedback 

controller is PID controller with λ=0.9 
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Figure 4.3: Unit Step Responses of the Cascade (PI-PI) and Single-Feedback (PID) Control Systems 

 

Table 15: ITSE Values of the Systems in Figure 4.3 for Step Response and Disturbance  
ITSE  

Step Response Disturbance 

Cascade Cont. 4.135 0.1458 

Single-Feedback Contr. 2.945 0.5545 
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(iii) When cascade controllers are PI-PI controllers and single feedback 

controller is PI controller with λ=2.5 
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Figure 4.4: Unit Step Responses of the Cascade (PI-PI) and Single-Feedback (PI) Control Systems 

 

Table 16: ITSE Values of the Systems in Figure 4.4 for Step Response and Disturbance  
ITSE  

Step Response Disturbance 

Cascade Cont. 4.2 0.1458 

Single-Feedback Contr. 4.912 1.812 

 

Comments on Simulation Study: 

      When a continuous time controller is converted into a discrete time controller, it 

is possible to observe overshoot at the system response. Therefore, the small increase 

observed in overshoots of the systems, when compared to continuous time 

simulations of the same systems, is normal. 

      As it can be seen from the simulation results and ITSE values, cascade control 

makes progress in rejecting the disturbance effect but it is sometimes not successful 

about the temporary system response when compared to the single-feedback control 

system. However; if the ITSE criteria for both step response and disturbance are 

evaluated together, its failure is much less than its success. So, it can be said that 

cascade control is superior to single-feedback control. 
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4.3 Realization of the Control Systems 

      In order to observe the cascade controllers in real world, two systems are serially 

connected and two feedbacks from the system outputs are taken. One of the systems 

is Thermal Process Control Set PT326 and the other is the process simulator 

PCS327. It is not obligatory for cascade control to be applied to two serially 

connected systems. It can also be applied to a system, whose one state variable at 

least, can be measured. However, we have the opportunity to connect these systems 

serially and control them with cascade control system. 

 

4.3.1 Thermal Process Control Set PT326 

      This system takes the air from the environment with the help of the propeller and 

the heater of the system increases the temperature of the air taken from outside. The 

hot air passes through a tube and at the end of the tube, the temperature of the air is 

measured. When the dimension of the air income gap changes, the temperature of the 

air passing through the tube changes. The aim of us is to keep the temperature of the 

air, passing through the tube, at the reference temperature value which is set by the 

user. In addition, it is necessary to produce the right control signal that makes the 

heater work in right way. 

 

 
Figure 4.5: Upside View of the PT326 

 

  

      Since the control signal is received by the heater and the measurement is made at 

the end of the tube not at a near place to the heater, there is delay between the control 
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signal and the system response. So, this system is modeled as a first-order plus dead 

time (FOPDT) system.  

      Its model changes with respect to the dimension of the air income gap. Therefore, 

a fixed size 20° is chosen for the air income gap. The process model is evaluated as 

 

se
s

sG 35.0

173.0
97.0)( −

+
=                                                       (4.1) 

 

4.3.2 Process Simulator PCS327 

 

This system can be separated into four parts. 

 

(i) Reference and reference disturbance inputs: This part includes reference 

inputs between ±10V and disturbances that affect the reference. 

(ii) Controller: This part includes a comparing element for reference and 

output; also it includes a continuous controller. 

(iii) Non-linear unit: In this part five distinct non-linear elements can be 

formed ideally. 

(iv) Process: This part contains integral, lag, dead time and inverter blocks. 

The time constants of the integral and lag blocks can be selected as 10ms 

or 1s. 

 

 
Figure 4.6: Upside View of the PCS327 
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      Only the fourth part of the simulator is used for the application study. Three 

serially connected lag blocks with time constant 1s is chosen as process. So the real 

process model is 

  3)1(
1)(
+

=
s

sG                                                           (4.2) 

 

 

      But to tune the PID parameters, this system is approximated to a FOPDT model 

(Aström, 1995). Then the approximate process model is evaluated as 
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4.3.3 PLC 

 

      In this study, SIEMENS 315 2-DP PLC is used with one digital input, one digital 

output, one analog input and one analog output module. Technical characteristics of 

the PLC are shown in Table 17. 

 
Table 17: Characteristics of the PLC Used in Application Study  

Power Supply PS307 2A 

PLC CPU 315-2DP  

DI Module SM321 DI32×DC24V 

DO Module SM322 DO32×DC24V, 0.5A 

AI Module SM331 AI8×12BIT 

AO Module SM332 AO4×12BIT 
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Figure 4.7: Upside View of the PLC 

 

 

 

4.4 Application Process 

      As it is mentioned above, we have two systems to be serially connected to each 

other. The system in the inner loop should be faster than the system in the outer so as 

to eliminate the disturbance effect faster. Since we have two separate systems, we 

have the opportunity to determine the order of the systems with respect to their unit 

step responses. In Figure 4.8, simulation diagram of two systems are shown and in 

Figure 4.9 step responses of the same systems are represented.  

 

 
Figure 4.8: Simulation Diagram of the Two Systems 
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Figure 4.9: Step Responses of the Two Systems 

 

      As it can be seen from Figure 4.9, PT326 is faster than PCS327. So, the system 

taking part in the inner loop is determined as PT326 and the system taking part in the 

outer loop is determined as PCS327. Connection of the systems is shown in Figure 

4.10. 
 

 
 

Figure 4.10: Connection of the Systems 
 
      Control element of the single-feedback and cascade control systems is selected as 

PLC and the controller types are determined as PID and PI controllers. PID 

controller program code is prepared to be used both for PID and PI controllers.  This 

PID program code is represented in Appendix G. The results obtained from the 

system outputs with respect to controller combinations, are compared with each 
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other. In these system responses, the reference value can be thought as 8950 (3.23 V) 

and the disturbance can be supposed to be a negative step input with a magnitude of 

0.5. With this disturbance, the system response in Figure 4.11 can be observed when 

the system is controlled with a cascade controller (λ1=2.5 and λ2=0.5). 
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Figure 4.11: Unit Step System Response of a Cascade Control System with Negative Disturbance 

 
 

(i) Cascade Controllers: PI-PI with λ1=2.5 and λ2=0.5 (ref = 8950) 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 4.12: Unit Step Response of the Cascade Control System 
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(ii) Single-Feedback Controller: PID with λ=1.8 (ref = 8950) 
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Figure 4.13: Unit Step Response of the Single-Feedback Control System 

 
 

(iii) Single-Feedback Controller: PID with λ=2.5 (ref = 8950) 
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Figure 4.14: Unit Step Response of the Single-Feedback Control System        

 
 

(iv) Cascade Controllers: PI-PI with λ1=2.5 and λ2=0.8 (ref = 8950) 
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Figure 4.15: Unit Step Response of the Cascade Control System        
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5. Conclusion 
 
      The PID tuning rule is used both for single-feedback and cascade control 

systems. This tuning rule is based on the process model and the desired closed loop 

response. The ideal controller which can give the desired closed loop response is 

found and the ideal controller is obtained by taking the first three terms from 

Maclaurin series expansion of the ideal controller. Extensive simulation studies 

illustrate that the application of the tuning rule to cascade control systems gives 

better performance compared to application of the tuning rule to single – feedback 

control systems. In addition to this main benefit, the method has several advantages: 

it is simple and easy to use because the tuning parameters are in analytical form; the 

tuning of inner and outer controllers can be done simultaneously, and no additional 

identification step is required even when the secondary controller is retuned because 

the tuning method is based on the model parameters of the process; the cascade 

control system can be tuned to meet the specifications of both inner and outer loops 

because the tuning method has two adjustable parameters. 

 


