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ABSTRACT 

This paper deals with the application of artificial 
neural networks (ANNs) to the fault detection and 
location in extra high voltage (EHV) transmission lines 
for high speed protection using one terminal line. The 
neural fault detector and locators have been trained 
with different sets of data available from a selected 
power network model and simulating different fault 
scenarios (fault types, fault locations, fault resistances 
and fault inception angles). A comparative study of the 
proposed fault locators has been carried out in order 
to determine which ANN fault locator structure leads 
to the best performance. The results show that the 
fault locator using current and voltage values is more 
accurate.  
 

I. INTRODUCTION 
Overhead transmission line are parts of the main 
components in an electric power system and, because 
transmission lines are exposed to the nature, the 
possibility of experiencing faults on transmission lines is 
generally higher than that on other main components. 
Line faults are the most common faults because lines are 
exposed to the elements and there are many causes of 
faults. Lines faults may be triggered by lightning strokes, 
trees may fall across lines, fog and salt spray on dirty 
insulators may cause the insulator strings to flash over, 
and ice and snow loading may cause insulator strings to 
fail mechanically. When a fault occurs on an electrical 
transmission line, it is very important to detect it and find 
its location in order to make necessary repairs and to 
restore power as soon as possible, the time needed to 
determine the fault point along the line will affect the 
quality of power delivery. Therefore, an accurate fault 
location on the line is an important requirement for a 
permanent fault. Pointing to a weak spot, it is also helpful 
for a transient fault, which may result from a marginally 
contaminated insulator, or a swaying or growing tree 
under the line.  
 

Fault location for transmission lines has been subject of 
interest for many years. During the last decade a number 
of fault locating algorithms have been developed; 
including the steady-state phasor approach, the 
differential equation approach and the traveling-wave 
approach [1] as well as one-end [2] and two-end [3] 
algorithms. In the later category, synchronized [4] and 
non-synchronized [5] sampling techniques are used. 
However, two terminal data are not widely available. 
From the practical viewpoint, it is desirable for equipment 
to use only one-terminal data. The one-end algorithms, in 
turn, utilize different assumptions to replace the remote 
end measurements. Most of fault locators are only based 
on the local measurement. Currently the most widely used 
method of overhead line fault location is to determine the 
apparent reactance of the line during the time that fault 
current is flowing and to convert the ohmic result into 
distance based on the parameters of the line. It is widely 
recognized that this method is subject to errors when the 
fault resistance is high and the line is fed from both ends, 
and when parallel circuits exist over only part(s) of the 
length of the faulty line. 
 
Many successful applications of artificial neural networks 
to power system have demonstrated including security 
assessment, load forecasting, control etc... Recent 
applications in protection have covered fault diagnostic 
for electric power system [6], transformer protection [7] 
and generator protection [8]. However, almost all these 
applications in protection merely use the ANN ability of 
classification, that is, ANNs only output 1 or 0. 
 
In this paper, a single ended fault detector and three fault 
locators are proposed for on-line application using ANNs. 
A feed-forward neural network based on the back-
propagation learning algorithm has been used to realize 
the fault detector and locator. The neural fault detector 
and fault locators have been trained and tested with a 
number of simulation cases by considering different fault 
conditions (fault types, fault locations fault resistances 
and fault inception angles) in a selected network model. 



  

II. POWER SYSTEM UNDER CONSIDERATION 
To evaluate the performance of the proposed neural 
network-based fault detector and locator, a 400 kV, 120 
km transmission line extending between two sources as 
shown in Figure 1 is considered in this study. The 
transmission line is represented by distributed parameters 
and the frequency dependence of the line parameters is 
taken into account. The physical arrangement of the 
conductors is resumed in Figure 2 and the characteristics 
may be found in [9]. The input and output data used for 
training and testing the neural fault detector are generated 
from the S end of the sample power system model. A 
highly accurate transmission line simulation technique 
[10] was utilized to generate voltage and current 
waveforms for different fault types and conditions. 
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Figure 1. System under study, VT: Voltage Transformer, 
CT: Current Transformer, CB: Circuit-Breaker, FD: Fault 
Detector, FL: Fault Locator 
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Figure 2. Transmission line configuration 
 

III. PROPOSED FAULT DETECTOR AND 
LOCATOR BASED ON NEURAL NETWORKS 

The first step is to detect the fault using instantaneous 
current and voltage values. In case a fault exists, the 
voltage and current signals are fed to one cycle DFT 
filters for extraction of the fundamental phasor 
magnitudes. 
 
The ANN fault detector (FD) proposed in this paper is 
designed to indicate the presence or absence of any fault 
type. The occurrence of the fault is determined by 
identifying the power system state directly from 
instantaneous current and voltage data using one terminal 
line. The fault locator (FL) is designed to indicate the 
distance of the fault in the transmission line. 
 
The design process of the fault detector and fault locator 
goes through the following steps: 

1) Preparation of suitable training data set that 
represents cases the ANN needs to learn. 

2) Selection of a suitable ANN structure for a given 
application. 

3) Training of the ANN. 
4) Evaluation the trained ANN using test patterns until 

satisfied with its performance. 
 

FAULT DETECTOR 
Inputs and Outputs 
In order to build up an ANN, the inputs and outputs of the 
neural network have to be defined for pattern recognition. 
Inputs to the network should provide a true representation 
of the situation under consideration. The phase current 
and voltage signals and the zero sequence current and 
voltage signals extracted from the simulation at the relay 
location (end S) are used as inputs to the ANN. The 
process of generating input patterns to the ANN is 
depicted in Figure 3. 
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Figure 3. Process for generating input patterns to the ANN 
fault detector 
 
The current and voltage signals are calculated as a string 
of samples corresponding to a 100 kHz sampling 
frequency. These signals are processed so as to simulate a 
2 kHz sampling process (40 samples per 50 Hz cycle) 
using an anti-aliasing filter. This sampling rate is 
compatible with sampling rates presently used in digital 
relays. It should be mentioned that the input current and 
voltage samples have to be normalized in order to reach 
the ANN input level (±1). The phase and zero sequence 
signals are sampled at 2 kHz and used as input data to the 
ANN. The ANN output is indexed with either a value of 
“1” (presence of a fault) or “0” (non-faulty situation). 
 
Structure and Training of the Neural Fault Detector  
The fault detection task can be formulated as a pattern 
classification problem. A fully-connected multi layer 
(input, hidden and output) feed-forward neural network 
(FFNN) has been used to classify faulty/non-faulty data 
sets. The number of inputs to the network and the number 
of neurons in the input and hidden layers are decided 
empirically through extensive simulations. Various 
network configurations are trained and tested in order to 
establish an appropriate network with satisfactory 
performance. Performance criteria are fault tolerance, 
time response and generalization capabilities. The three 
layer FFNN is selected to implement the algorithm for 
single ended fault detection. Data strings of seven 



  

consecutive samples of the three phase and zero sequence 
voltage signals taken every 2 kHz are found to be 
appropriate inputs to the neural network. This represents a 
moving window with a length of 3 ms. In order to 
construct a good neural network system, it is vitally 
important to train and test it correctly. With supervised 
learning, ANN is trained with various input patterns 
corresponding to different types of fault (a-g, b-g, c-g, a-
b-g, a-c-g, b-c-g, a-b, a-c, b-c, a-b-c and a-b-c-g, where a, 
b, and c are related to the phases and g refers to the 
ground) at various locations for different fault inception 
angles and fault resistances. 
 
After a series of simulation training and testing it has been 
found that three-layer architecture leads to the best 
performance for the ANN-fault detector. The ANN 
consists of 56 input neurons for the three phase current 
and voltages (Ia, Ib, Ic, Va, Vb, Vc) and the zero sequence 
current and voltage (Io, Vo) input signals, 18 neurons in 
the hidden layer and one output neuron. A sigmoid 
transfer function was used and the error back-propagation 
method has been used for training [11]. The ANN 
structure of the fault detector is shown in Figure 4. 

 
 

�)�*���������)�*���������)�*���������)�*�������� ���� ��������
	)�+,�%����	)�+,�%����	)�+,�%����	)�+,�%����

Output

Inputs

.

Sampled values of :

- Three phase currents
- Three phase voltages
- Zero sequence current
- Zero sequence voltage

 
 

Figure 4.  Structure for ANN fault detector 
 
Tests and Results 
After training, the neural fault detector (FD) was tested 
with 90 new fault conditions for each type of fault. These 
conditions included different fault locations, different 
inception angles (0, 30, 60 and 90 degrees) and different 
fault resistances (0, 5, 40, 80 and 100 �). 
 
Figures 5 to 9 show the phase and zero sequence voltage 
waveforms and the response of the proposed ANN-fault 
detector for some examples. 
 
The results of Figure 5 are obtained for a single phase to 
ground fault (b-g) located at 117 km with a fault 
resistance of 5 � and an inception angle of 30° which 
corresponds to the occurrence of the fault at time 27 ms. 
 
In Figure 6 are shown the results for a double phase to 
ground fault (a-c-g) located at 10 km with a fault 
resistance of 40 � and an inception angle of 90° which 
corresponds to the occurrence of the fault at time 30.5 ms. 
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Figure 5. Current and voltage waveforms and ANN output 
for b-g fault at 117 km from S with a fault resistance of 5 
� and an inception angle of 30° 
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Figure 6. Current and voltage waveforms and ANN output 
for a-c-g fault at 10 km from S with a fault resistance of 
40 � and an inception angle of 90° 
 
The voltage waveforms and the ANN output shown in 
Figure 7 are related to a double phase fault (b-c) located at 
50 km without fault resistance and with an inception angle 
of 60° which corresponds to a fault at 29 ms. 
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Figure 7. Current and voltage waveforms and ANN output 
for b-c fault at 50 km from S with and inception angle of 
60° 



  

In Figure 8 are shown the results for a three-phase to 
ground fault (a-b-c-g) located at 10 km with a fault 
resistance of 80 � and an inception angle of 90° which 
corresponds to the occurrence of the fault at time 30.5 ms. 
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Figure 8. Current and voltage waveforms and ANN output 
for a-b-c-g fault at 10 km from S with a fault resistance of 
80 � and an inception angle of 90° 
 
The results demonstrate the ability of the fault detector to 
produce the correct response in all simulation tests. The 
results show the stability of the ANN outputs under 
normal steady-state conditions and rapid convergence of 
the output variables to the expected values (either very 
close to unity or zero) under fault conditions. This clearly 
confirms the effectiveness of the proposed fault detector. 
It should be mentioned that the technique described herein 
is based on a time domain moving window approach as 
discussed previously.  The results show that in the fault 
cases presented, there is a very rapid transition in the 
ANN outputs as the windows move from the pre-fault to 
the fault states. The results reveal that the network is able 
to generalize the situation from the provided patterns and 
accurately indicates the presence or the absence of the 
fault. 
 
Performance 
The performance characteristics of an ANN fault detector 
are: 

1. The stability of ANN output values in the normal 
steady-state and under fault conditions. 

2. The minimal time error et  of fault detection which is 
the difference between the desired fault detection 
time value dt  and the actual fault detection time 

value at : dae ttt     −= .   
3. Generalization capabilities. 

 
A good ANN fault detector is obtained when the time 
error of fault detection is minimal, the ANN output values 
are stable in the normal conditions (i.e. 0) and under fault 
conditions (i.e. 1) and capable of providing fast and 
accurate fault detection under a variety of fault situations. 

The only means of verifying the performance of a trained 
neural network is to perform extensive testing. After 
training, the neural fault detector is then extensively tested 
using independent data sets consisting of fault scenarios 
never used previously in training. As mentioned before, 
the fault detector performances are evaluated in terms of 
the time error et  of fault. The best performances are 
obtained when the time error et  is minimal. 
 
The testing patterns corresponding to 90 new fault 
conditions for each fault type (11 types of fault) which 
represent 990 fault cases and the no-fault case are used to 
asses the performance of the fault detector. 
 
Table 1 gives the percentage of fault cases versus time 
error of fault detection et  of the FD for single phase to 
ground, double phase to ground, double phase, triple 
phase, triple phase to ground  fault type and all faults, 
respectively. 

 
Table 1. Fault cases versus fault detection time error of 
FD for different fault types 

Number of fault cases (%) 
Fault type 

et [ms] a-g 
b-g 
c-g 

a-b-g 
b-c-g 
c-a-g 

a-b 
b-c 
c-a 

a-b-c a-b-c-
g 

All 
faults 

0.5 100 100 98.33 100 100 99.54 
1.0 0.00 0.00 01.66 0.00 0.00 0.45 

 
It can be seen that the maximal time error et  of fault 
detection is 1 ms. A number of 99.54% of fault cases are 
detected with a time error of 0.5 ms and a number of 
0.45% of tested cases are detected with a time error of 1 
ms. All faults (100%) are detected with a time error less 
than 1 ms which represent very good performance. 
 

FAULT LOCATOR 
Inputs and Outputs 
The ANN relay is supposed to locate faults in 
transmission lines, having the magnitudes of the voltage 
and/or current phasors corresponding to the post-fault 
fundamental frequency as inputs. In order to obtain the 
magnitudes of such waves, the Discrete Fourier 
Transform (DFT) filter was utilized. So the three voltage 
(|Va|, |Vb|, |Vc|) and/or current (|Ia|, |Ib|, |Ic|) magnitudes 
seen at the busbar S are utilized as the inputs of the neural 
network. Normally, the interesting outputs are the fault 
distance. As mentioned, the magnitudes of the phasors are 
the input quantities to the proposed ANN. In fact, for 
practical applications, the FFT (Fast Fourier Transform) 
should be employed. The FFT is a fast algorithm used for 
efficient implementation of the DFT. It should be 
mentioned that the input variables have to be normalized 
in order to reach the ANN input level (±1). Due to the 
necessity of different scaling for voltages and currents, the 



  

normalized current must be divided by an additional 
factor. Figure 9 shows the schematic diagram for the fault 
locator (FL). The voltage and current signals are taken 
from the transmission line, passed through low pass (anti-
aliasing) filter. A DFT filter is used to extract the 
amplitude of the fundamental signal.  
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Figure 9. Process for generating input patterns to the ANN 
fault locator 
 
Architecture and Learning Rule 
We present three fault locators. The first (FL1) uses only 
current values, the second (FL2) uses only voltage values 
and the third (FL3) uses both current and voltage values. 
The three layer feed-forward neural network is selected to 
implement the algorithm for the single ended fault 
location. The transfer functions of the hidden and the 
output layer neurons are respectively the sigmoid function 
and the linear function. Concerning the ANN architecture, 
parameters such as the number of inputs to the network, 
as well as the neurons in the input and hidden layers were 
decided empirically. This process involved 
experimentation with various network configurations. 
 
The neural fault locator architectures are resumed in Table 
2. The error back propagation algorithm has been used 
throughout. The ANN structure of the FL3 is shown in 
Figure 10. 
 
Table 2. Architectures of the neural fault locators 

Number of neurons  
Fault 

locator 

 
Input 

variable 
Input  
layer 

Hidden 
layer 

Output 
layer 

FL1 I 3 18 1 
FL2 V 3 18 1 
FL3 I, V 6 20 1 

 

Fault 
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Output
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Figure 10.  ANN architecture of the fault locator FL3 

Performance 
In the following, only the results for single phase to 
ground faults are presented. The fault resistance is 
assumed to be less than 30 �. To get good general 
performance, for the single ended fault location, the fault 
locators are tested with a set of independent test patterns 
to cover wide system and fault conditions e.g. fault 
inception angle, fault location and fault resistance. Table 3 
gives some examples for the test results. The first column 
is the desired outputs and the right three columns are the 
actual outputs of the ANNs corresponding to the three 
proposed fault locators FL1, FL2 and FL3; respectively. 
 
Table 3. Test results for fault location 

Actual location (km) Desired location 
(km) FL1 FL2 FL3 
08.00 07.9519 08.0151 07.6660 
13.00 13.0510 13.0400 12.7839 
18.00 17.8848 17.9388 17.9528 
23.00 22.8658 23.0389 23.1537 
31.00 30.7401 30.7508 30.9293 
42.00 42.1383 41.9349 41.9101 
48.00 48.1432 47.9267 47.8919 
58.00 57.7599 58.0352 57.8454 
61.00 60.9604 61.2677 61.1975 
72.00 71.8332 72.0497 72.1174 
78.00 78.2810 77.9490 78.2182 
83.00 82.8993 82.5490 82.7222 
90.00 90.1776 90.0444 90.0219 
95.00 94.9842 94.9412 94.8803 

100.00 100.202 99.9474 100.004 
105.00 105.073 105.270 105.177 
110.00 110.015 110.568 110.306 
115.00 114.795 114.429 114.804 

 
The error in fault location is defined as: 
 

Error = | actual location - desired location | (km)     (1) 
 
Figures 11 to 13 give the error (in km) in the estimation of 
the fault location for FL1, FL2 and FL3; respectively. 
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Figure 11.   Test results of FL1. 
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Figure 12.  Test results of FL2. 
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Figure 13.   Test results of FL3. 
 
The criterion for evaluating the performance of the fault 
locators is defined as: 
 

line  theoflength 
location  desired -location  actual 

  (%)Error = ×100    (2) 

 
The minimum, the maximum and the average percentage 
errors of the fault locators are listed in Table 4. 
 
Table 4. Results of the fault locators 

Error  of  fault location 
FL1 FL2 FL3 

 

(km) (%) (km) (%) (km) (%) 
Min 0.0038 0.0031 0.0074 0.0062 0.0048 0.0040 
Max 0.3977 0.3314 0.6432 0.5360 0.3647 0.3039 
Aver. 0.1215 0.1013 0.1743 0.1452 0.1803 0.1503 
 
It can be seen that the FL3 (uses current and voltage 
phasor magnitudes) is the best fault locator. The minimum 
error is 4.8m (0.004%) and the maximum error is 364.7m 
(0.3039%). 
 

IV. CONCLUSION 
An efficient neural network-based fault detector for very 
fast EHV transmission lines protection and three neural 
network-based fault locators have been proposed in this 
paper. The results demonstrated the ability of the ANNs to 
generalize the situation from the provided patterns and 
accurately indicate the presence and the location of the 

fault using one terminal data. The neural fault detector use 
only instantaneous current and voltage values, while the 
neural fault locator uses the magnitudes of the voltage 
and/or current phasors. Test results presented demonstrate 
the effectiveness and the accurateness of fault detection 
under a variety of faulty situations including fault type, 
fault locations, fault inception angles and fault resistances. 
The use of currents and voltages phasor magnitudes gives 
the best fault locator.  
 

V. REFERENCES 
1. B. Lian and M.M.A. Salama, “An overview of digital 

fault location algorithms for power transmission lines 
using transient waveforms”, Electric Power System 
Research, 29 (1994), pp.17-25. 

2. Q. Zhang, Y. Zhang, W. Song and  Y. Yu, 
“Transmission line fault location for phase-to-earth 
fault using one-terminal data”, IEE Proc. Transm. 
Distrib., Vol. 146, No 2, March 1999, pp. 121-124 

3. L. B. Sheng and S. Elangovan, “A fault location 
algorithm for transmission lines”, Electric Machines 
and Power Systems, 26 (1998), pp. 991-1005. 

4. M. Kezunovic and J. Mrkic’ “An accurate fault 
location algorithm using synchronized sampling”, 
Electric Power System Research, 29, 1994, pp. 161-
169. 

5. D. Novosel, D.G. Hart, E. Udren and J. Garitty, “Un-
synchronized two-terminal fault location estimation”, 
IEEE Trans. on Power Delivery, Vol. 11, No. 1, 
January 1996, pp. 130-138. 

6. E. A. Mohamed and N. D. Rao, “Artificial neural 
network based fault diagnostic system for electric 
power distribution feeders”, Electric Power System 
Research, 35, 1995, pp. 1-10. 

7. M. R. Zaman and M. A. Rahman, “Experimental 
testing of Artificial neural network based protection 
of power transformer ”, IEEE Trans. on Power 
Delivery, Vol. 13, No. 2, April 1998, pp. 510-515. 

8. A. I. Megahed and O. P Malik, “An Artificial neural 
network based digital differential protection scheme 
for synchronous generator stator winding protection”, 
IEEE Trans. on Power Delivery, Vol. 14, No. 1, 
January 1999, pp. 130-138. 

9. W. D. Humpage, K. P. Wong and T. T. Nguyen, 
“Network Equivalents in Power System 
Electromagnetic Transient Analysis”, Electric Power 
Systems Research, No 5, 1982, pp 231-243. 

10. A.T. Johns, R.K. Aggarwal, “Digital simulation of 
faulted e.h.v. transmission lines with particular 
reference to very high speed protection”, IEE 
Proceedings on Generation, Transmission and 
Distribution, Vol. 123, No. 4, April 1976, pp 353-
359. 

11. D. V. Coury and D. C. Jorge, “Artificial Neural 
Network Approach to Distance Protection of 
Transmission Lines”, IEEE Transactions on Power 
Delivery, Vol. 13, No. 1, January 1998, pp. 102-108. 

 


