
Accelerating Discrete Haar Wavelet Transform on GPU Cluster

Selcuk Aslan, Hasan Badem, Dervis Karaboga, Alper Basturk, Tayyip Ozcan

Erciyes University, Engineering Faculty, Computer Engineering Department
selcukaslan, hbadem, karaboga, ab, tozcan@erciyes.edu.tr

Abstract

The Discrete Haar Wavelet Transform has a wide range of

applications from signal processing to video and image pro-

cessing. Data-intensive structure and easy of implementa-

tion make Discrete Haar Wavelet Transform convenient to

distribute fundamental operations to multi-CPU and multi-

GPU systems. In this paper, the wavelet transform was

ported in a compute-efficient way to CPU cluster and pro-

grammable GPU cluster by utilizing MPI and CUDA re-

spectively. Experimental studies conducted as part of the

parallelization strategies for two-dimensional Discrete Haar

Wavelet Transform show that the total running time re-

quired to process all rows and columns of an image with

different size is significantly decreased on the GPU cluster

when compared to the its counterparts on a single CPU, sin-

gle GPU and CPU cluster. Besides the speedup of the GPU

based transform, preliminary analysis also showed that the

size of the image is an important parameter on the scalabil-

ity of the GPU cluster.

1. Introduction

With the increasing growth of technology and driven by

the demand for real-time, high resolution graphics, we have to

operate a vast amount of information every time which often

presents difficulties. The digital information must be stored and

retrieved in an efficient and effective manner, in order to make it

ready for instant access. Wavelet provide a mathematical way of

encoding information in such a way that it is layered according

to level of detail [1]. The wavelet transform, originally devel-

oped as a tool for the analysis of seismic data, has been applied

in areas as diverse signal processing, video and image coding

and data mining [1]. The fundamental idea is to decompose a

signal into components with respect to this wavelet basis, and to

reconstruct the original signal as a superposition of wavelet ba-

sis functions [1]. If the shape of the wavelets resembles that of

the data, the wavelet analysis results in a sparse representation

of the signal, making wavelets an interesting tool for data com-

pression. In the theory of wavelet analysis, both continuous and

discrete wavelet transforms (DWT) are defied [1]. If discrete

and finite data are used such as digital images, it is appropriate

to consider the discrete wavelet transform. The discrete wavelet

transform is a linear and invertible transform that operates on a

data vector whose length is usually an integer power of 2 [1].

The DWT and its inverse can be computed by an efficient filter

bank algorithm which includes repeated high and low-pass fil-

ter and downsampling for forward transform or upsampling for

inverse transform.

Increasing computational complexity with the size of the

digital image being processed and the needy of real-time com-

pression or decompression have enhanced the importance of

parallelized DWT for multi CPU (Central Processing Unit) and

GPU (Graphical Processing Unit) systems [2-5]. Custom hard-

ware and special implementations of the DWT have been de-

veloped to meet these computational demands [2-5]. GPUs

with programmable, higher floating point computing power and

bandwidth when compared to the regular processing units have

taken attention and widely used by researchers [2-5]. Wong et

al. implemented the DWT on consumer level programmable

graphics card hardware with the goal of speeding up JPEG2000

compression [6]. Tenllado et al. investigated the performance

of the filter bank and lifting schemas of the 2D DWT on GPUs

[7]. Different type of wavelets and size of data used in experi-

mental studies and the performance gain was improved between

10 percent and 140 percent [7]. Franco et al. described a Com-

pute Unified Device Architecture (CUDA) based implementa-

tion on the DWT on Nvidia Tesla c870 and gained speedups of

approximately 20x over a sequential implementation [8]. Laan

et al. proposed a hybrid method between row-column and block

based methods for DWT and achieved considerable speedups

compared to optimized CPU implementations both for 2-D im-

ages and 3-D volume data by utilizing CUDA platform [9].

Galiano et al. analyzed the parallel implementations of the 2-D

DWT both on a shared memory multiprocessor and GPU plat-

form [10].

In this study, Haar wavelet which is the oldest wavelet intro-

duced by Hungarian mathematician Alfred Haar has been used

to investigate the compatibility of the parallelized implementa-

tions of the transformation on a GPU-equipped compute nodes.

Images with various resolutions have been chosen to analyze

the relationship between the size of the data and number of

compute nodes. The rest of the paper is organized as follows.

Section 2 summarizes the background to Discrete Haar Wavelet

Transform. In Section 3 we provide an introduction to Message

Passing Interface (MPI) and CUDA. The details of the CUDA

based parallelization approach is given in Section 4. Experi-

mental studies are analyzed in Section 5. Finally, conclusions

and future works are given in Section 6.

2. Discrete Haar Wavelet Transform

The basic idea of the wavelet transform is to approximate

a complex function as a superposition of simpler functions,

which are obtained from one prototype function called basic

wavelet by conveniently scaling and translating it [1, 6-10].

Haar wavelet or Haar basis is the simplest and the oldest type

of wavelet. Like all wavelet transforms, Haar wavelet trans-

form decomposes the information of a discrete signal into ap-

proximation and detail sub-signals whose lengths are half of

the transformed signal [6-10]. Given a 1-D discrete signal

0

= (

0

0

;

0

0

; : : : ;

N�1

0

) with N samples, where N is a power

of 2, to obtain a approximation

1 and detail d1 bands by uti-

lizing wavelet transform, a low-pass filter and a high-pass filter

bank denoted as H and G respectively are applied to the

0

and

1237

filtered bands are downscaled by a factor of 2 [6-10]. Then we

continue with approximation signal
1 and repeat the same fil-

tering procedures, we get a second approximation
2 and detail

d

2 signals. The recursive process continued J times where J is

called the number of levels is presented graphically in Fig. 1.

H 2

G 2

c0 c1

d1

H 2

G 2

c2

d2

H 2

G 2

cJ

dJ

....

H2

2

cJ

dJ

~

G
~

+ H2

2

cJ-1

dJ-1

~

G
~

+ H2

2

c1

d1

~

G
~

+
c0

(a)

(b)

Fig. 1. Forward (a) and inverse (b) wavelet transform

The transformation of an image is a 2-D generalization of

the 1-D wavelet [6-10]. It applies the 1-D wavelet transform for

each row [6-10]. Next, these transformed rows are treated as if

they were creating an image and 1-D transform is applied to ev-

ery column of the image [6-10]. The resulting values are all de-

tail coefficients and a single overall approximation coefficients.

By using these filters in one stage, an image is decomposed into

four bands each at half of the original resolution [6-10]. The

approximation band shows the general trend of pixel values and

detail bands show the vertical-horizontal changes in the images.

If these details are very small then they can be set to zero with-

out significantly changing the image. The number of zero val-

ued transformed pixels is an important measure to success of

the compression of the original image or signal [6-10].

The lower left band is the LH sub-band that is obtained by

applying low-pass filtering to the rows and high-pass filtering

to the columns [6-10]. The lower right sub-band is the HH sub-

band and obtained by applying high-pass filtering rows and the

columns of the image [6-10]. The top right sub-band is the HL

sub-band and obtained by applying high-pass filter to rows and

low-pass filter to the columns of image [6-10]. The top left sub-

band is the LL sub-band which is obtained by applying low pass

filter to rows and columns of the image [6-10]. LL sub-band of

the image corresponds to the approximate coefficients and if

wavelet transform will be employed another time, this approxi-

mate coefficients used. In the Fig 2., mentioned approximation

sub-band which is used for subsequent wavelet transform and

detail sub-bands are illustrated in the image processed by one-

level Discrete Haar Wavelet Transform.

3. MPI and CUDA

Numerous programming languages and libraries that differ

in their view of the address space available to the programmer

have been developed for explicit parallelism. Message-passing

programming paradigm that is standardized with the library

Message Passing Interface or MPI as it is commonly known

is one of the most widely used approach for parallel computers

[11, 12]. The key attribute that characterizes message-passing

programming paradigm is the partitioned address space asso-

ciated directly with a particular process [11, 12]. Non-shared

address space was accessed by a particular process and if more

than one process are needed to perform computations, required

part of data must be transferred by a send-receive call between

LL HL

LH HH

Fig. 2. Approximation and details sub-bands in the image

processes [11, 12]. For these send-receive operations, MPI con-

tains a large library of functions that can be called from some

other programming languages and macro and type definitions

[11, 12].

Nowadays, GPU devices evolved into a highly parallel,

multithreaded, many core processor with high memory band-

width has gained popularity as a main computation device for

several applications such as physics simulations, neural network

training, image processing and even biological sequence align-

ment [13, 14]. With their G80 series of graphics processors,

NVidia introduced a programming environment called CUDA.

CUDA is a general purpose parallel computing platform and

allows the GPU to be programmed with a high-level program-

ming language [13, 14]. With the extension of C language

of CUDA, programmer defines special functions called kernels

which are directly executed N times in parallel by N different

CUDA threads [13, 14]. These threads are organized in thread

blocks and the collection of blocks of a kernel is called grid.

In execution time, each block of the grid is distributed to the

Streaming Multiprocessors (SMs) which are arithmetic-logic

units of the GPU [13, 14]. This scalable programming model

is illustrated for different number of SMs in the Fig. 3.

4. Implementation of the Discrete Haar
Wavelet on Distributed Systems

Implementation of the 2-D Discrete Haar Wavelet Trans-

form on CPU cluster is relatively easy when compared to the

implementation on GPU cluster. The entire image is equally di-

vided into sub-parts and then these sub-parts directly distributed

to the compute nodes in the CPU cluster to process them simul-

taneously. However, in GPU cluster a second level parallelism

should be taken into account to more effectively utilize the com-

pute power of the GPU devices. After related part of the image

transferred from host to the global memory of the GPU, suitable

kernels should be invoked to perform the desired transform.

In the proposed GPU parallel implementation of the 2-D

Discrete Haar Wavelet Transform, two different kernels have

been used to transform columns and rows of an image or part of

an image. When processing the rows of the stored data, M and

N represent the number of the columns and number of rows in

the transferred image or part of image and L shows the level of

1238

Block 0 Block 1 Block 2 Block 3

SM 0

GPU with 4 SMs

SM 1 SM 1 SM 2

Block 4 Block 5 Block 6 Block 7

Block 0 Block 1 Block 2 Block 3

SM 0

GPU with 4 SMs

SM 1 SM 1 SM 2

Fig. 3. Executed blocks by streaming multiprocessors

transform, N=2L blocks with M=2

(L+1) threads employed in a

synchronization manner that each thread in the block waits after

taking half of the sum and difference of two subsequent pixels

until all threads in the block complete their tasks. A similar

work flow for processing columns of the data is used in the par-

allelized implementation. All columns of the appropriate part

of the image are transformed by utilizing M=2

L blocks with

N=2

(L+1) threads. The relationship between rows, columns

and level of transform to build correct block and thread hier-

archy is given in the Fig. 4 below.

0 1 2 3 4 5

Block 0

0 1 2 3 4 5

Block 1

0 1 2 3 4 5

(L)
Block N/2 - 2

0 1 2 3 4 5

(L)
Block N/2 - 1

..
..
.

M/2 - 1
(L + 1)

N
/2

-

1
(L

)

0 1 2 3 4 5

Block 0

0 1 2 3 4 5

Block 1

0 1 2 3 4 5

(L)
Block M/2 - 2

0 1 2 3 4 5

(L)
Block M/2 - 1

..
..
.

N/2 - 1
(L + 1)

M
/2

-

1
(L

)

(a) (b)

Fig. 4. Thread structure of the row (a) and column (b) kernels

Minimizing data transfer between host and device is one of

the most important performance consideration in CUDA pro-

gramming. For GPU based parallelization of the 2-D Discrete

Haar Wavelet, the entire image in the case of using single GPU

or equally divided part of the image in the case of using GPU

cluster was copied one time from the host to the device memory.

After completing transformation, processed image was copied

back from the device to host memory. If GPU cluster was used

to process image, each GPU node including the master node that

organizes the distribution and assembly operations performs a

similar copy task as described for the single GPU application.

The basic operations dedicated to sending parts of the raw im-

age and receiving them with the integration of MPI and setting

up a correct thread block by utilizing level of transform and size

of image are summarized in the Algorithm 1.

Algorithm 1 Main steps of the GPU based parallelization

1: MPI Comm size(MPI COMM WORLD, &size)
2: MPI Comm rank(MPI COMM WORLD, &rank)
3: if rank%size == 0 then

4: Read the entire MxN image.
5: Equally divide image to Mx(N=size) sized sub-parts.
6: Scatter parts of image to 0:::(size� 1) ranked GPU nodes.
7: end if

8: Copy Mx(N=size) image part to GPU global memory.

9: for L 0:::TL do
10: processRowsnM=2

L

; (N=size)=2

(L+1)

o(. . .)

11: processColumnsnN=2

L

; (M=size)=2

(L+1)

o(. . .)
12: end for

13: Copy Mx(N=size) image part back to host memory.

14: if rank%size == 0 then

15: Gather parts of image from 0 : : : (size� 1) ranked GPUs.
16: Combine image fragments into MxN image.
17: Write the entire MxN image.
18: end if

5. Experimental Studies

We have evaluated serial and parallel implementations of

the 2-D Discrete Haar Wavelet Transform in a cluster with 4

compute nodes. Each compute node powered by Asus Geforce

GTX 780 Direct CU II Nvidia graphics card which has 2304

CUDA cores and 3 GB of global memory has been equipped

with Intel i5 4670 processor with 4 cores running at frequen-

cies between 3.4 GHz and up to 3.8 GHz in turbo mode, 2GB

RAM and connected with a standard Gigabit Ethernet. We per-

formed the timing tests using images of different sizes 512x512,

1024x1024 and 2048x2048. For each image with different

sizes, three-level 2-D Discrete Haar Wavelet Transform has

been applied 10 different times. The elapsed time between start

and finish of the transform that includes the data transfer over-

head on GPU applications was recorded in terms of miliseconds

and average values of 10 different runs was given in Table 1.

Table 1. Average running times of transform

Image Size
Compute Environment

CPU GPU CPU Clust. GPU Clust.

512x512 3.9705 0.4392 1.2392 0.2866

1024x1024 23.4592 1.3566 9.4674 0.5162

2048x2048 99.6000 4.9992 34.9194 1.4145

From the results given in the Table 1, its clear that GPU

cluster has significantly decreased the running time needed to

generate a transformed image which is 8 times smaller than the

original image. While the size of the image is increased by

a factor of 4, the demanding tasks on sequential pixel values

are more efficiently handled by the massively parallel process-

ing power of the GPUs. For a more detailed investigation on

the performance gain of the parallelized implementation of the

sequential algorithm, speedup and efficiency are two remark-

able performance metrics in the literature. Speedup is the ratio

of sequential execution time to parallel execution time and effi-

ciency is the ratio of the speedup to number of compute nodes or

1239

Table 2. Speedup compared to other compute environments

Image Size
Compute Environment

CPU GPU CPU Clust.

512x512 13.8538 1.5324 4.3238

1024x1024 45.4376 2.6281 18.3406

2048x2048 70.4136 3.5343 34.9194

processors. The gained speedup compared to a single threaded

CPU, standalone GPU and CPU cluster by using GPU cluster is

shown in the Table 2.

Analyzing the speedup and efficiency values gained by uti-

lizing the GPU cluster, an individual comparison being made

on a single GPU should be more convenient. In Table 3, this

specialized comparison is summarized. While the speedup and

efficiency values for 512x512 and 1024x1024 sized images lags

behind the optimal values which are 4 for speedup and 1 for

efficiency, our distributed 2-D Discrete Haar Wavelet Trans-

form is very close to ideal speedup and efficiency with the val-

ues 3.5343 and 0.8836 respectively for 2048x2048 sized image.

This type of changing on the mentioned metrics gives important

information about the usability of the GPU clusters. Distribut-

ing equally divided data chunks to parallel computing nodes is

not enough to decrease the running time substantially. If a sin-

gle GPU is capable of handing the entire data which will be

distributed among GPU nodes in the cluster to process its ele-

ments simultaneously, using more than one GPU node to trans-

form this data could not improve the running performance as

expected. The communication overhead between cluster nodes

and necessary data transfers on GPUs deteriorate the speedup

and efficiency values for the cluster if a single GPU node is al-

ready sufficient for the data being transformed. In addition to

this, some adjustments should be done on the GPU which in-

cludes the data being transferred between the host and device,

accessing patterns of the transferred data and a good balance

between multiprocessors of the GPU to maximize the hardware

utilization.

Table 3. Speedup and efficiency compared to a single GPU

Image Size
Compute Environment

Speedup Efficiency
GPU GPU Clust.

512x512 0.4392 0.2866 1.5324 0.3831

1024x1024 1.3566 0.5162 2.6281 0.6570

2048x2048 4.9992 1.4145 3.5343 0.8836

6. Conclusion

In this paper, we analyzed the parallel implementation of

the 2-D Discrete Haar Wavelet Transform with different size

of images on different types of compute architectures. From

the comparison results, it is clear that using a GPU cluster

for solving appropriate parts of the problems which have cer-

tain inherent parallelism characteristics and require consider-

able amount of processing power has greatly improved the run-

ning time when compared with the implementations on single

CPU, single GPU and CPU cluster. Another important conclu-

sion in this study is that if the ratio of arithmetic operations to

other operations including data transfers to or from GPU mem-

ory, communication between compute nodes and read-write re-

quest is low or single GPU is capable of executing the whole

data as is done in a GPU cluster, parallelized implementations

on both CPU and GPU clusters could not give promising results

in terms of running time and speedup. Future work involves a

more detailed analysis of the parallelization strategy on differ-

ent image processing techniques in order to fully exploit all the

computing resources provided by the clusters.

7. References

[1] K.H. Talukder, K. Harada, ”Haar wavelet based approach

for image compression and quality assessment of com-

pressed image”, IJAM, vol. 36, no. 1, pp: 1:9, 2007.

[2] T. Wong, C. Leung, P. Heng, J. Wang, ”Discrete wavelet

transform on consumer level graphics hardware”, IEEE T

Multimedia, vol. 9, no. 3, pp: 668-673, 2007.

[3] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, F. Tirado,

”Parallel implementation of the 2D discrete wavelet trans-

form on graphics processing units: filter bank versus lift-

ing”, IEEE T Parall Distr, vol. 19, no. 3, pp: 299-310,

2008.

[4] J. Franco, G. Bernabe, J. Fernandez, M.E. Acacio, ”A

parallel implementation of the 2D wavelet transform us-

ing CUDA”, 17th Euromicro International Conference

on Parallel, Distributed and Network-based Processing,

Weimar, 2009, pp: 111-118.

[5] W.J. van der Laan, A.C. Jalba, J.B.T.M. Roerdink, ”Ac-

celerating wavelet lifting on graphics hardware using

CUDA”, IEEE T Parall Distr, vol. 22, no. 1, pp:132-146,

2011.

[6] V. Galiano, O. Lopez, M.P. Malumbres, H. Migallon,

”Parallel strategies for 2D discrete wavelet transform in

shared memory systems and GPUs”, J Supercomput, vol.

64, no. 1, pp: 4-16, 2013.

[7] Z. Yang, Y. Zhu, Y. Pu, ”Parallel image processing based

on CUDA”, International Conference on Computer Sci-

ence and Software Engineering, Wuhan, Hubei, 2008, pp:

198-201.

[8] F. Zheng, X. Xu, Y. Yang, S. He, Y. Zhang, ”Accelerat-

ing biological sequence alignment algorithm on gpu with

CUDA”, International Conference on Computational and

Information Sciences (ICCIS), Chengdu, 2011, pp: 18-21.

[9] J. Barnat, P. Bauch, L. Brim, M. Ceska, ”Employing mul-

tiple CUDA devices to accelerate LTL model checking”,

16th International Conference on Parallel and Distributed

Systems, Shanghai, 2010, pp: 259-266.

[10] J. Zhang, S. You, L. Gruenwald, ”Tiny GPU cluster for

big spatial data: a preliminary performance evaluation”,

35th International Conference on Distributed Computing

Systems Workshops, Columbus, Ohio, 2015, pp: 142-147.

[11] A. Grama, G. Karypis, V. Kumar, A. Gupta, ”Introduction

to parallel computing”, Addison Wesley, Harlow, England,

2003.

[12] P. Pacheco, ”An Introduction to parallel Programming”,

Morgan Kaufmann, Burlington, USA, 2011.

[13] D.B. Kirk, W.W. Hwu, ”Programming massively parallel

processors: A Hands-on Approach”, Morgan Kaufmann,

Burlington, USA, 2010.

[14] J. Sanders, E. Kandrot, ”CUDA by example: an introduc-

tion to general-purpose GPU programming”, Pearson Ed-

ucation, Boston, USA, 2011.

1240

