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Abstract

In this paper, autoregressive lattice parameter models for two-dimensional (2-D) spectrum estimation are
presented. The theory is based upon the recently developed 2-D lattice modelling technique. It is shown that it
is possible to calculate the lattice parameters from only a knowledge of the autocorrelation of the 2-D process.
The stability of synthesis model is determined from the lattice parameter factors. Three structurally stable
quarter-plane models are given to eliminate the stability test at each stage. Ezamples are given to illustrate
the performance of the proposed method.

1. Introduction

The problem of two-dimensional (2-D) spectral estimation arises in various fields such as seismic signal processing
[1], radar [2], sonar [3], image restoration [4], and radio astronomy. Consequently, it has been subject to intensive
research over the past several years.

An excellent up to date review of multidimensional spectral estimation has been made by McClellan [5].
In this paper, seven different classes of spectral estimation methods have been discussed. It was shown that
five of these classes are exactly parallel to the one-dimensional {1-D) situation. Namely, these are the classical
methods based on the discrete Fourier transform, the maximum likelihood method [6], the autoregressive (AR)
method, the maximum entropy method due to Burg [7], and a generalization of the Pisarenko’s method [8]. The
other two classes have no exact counterparts in 1-D Spectral estimation. One is the class of separable estimators
[9], where 1-D estimator is employed along each of the individual dimensions. The other method is based upon
the data extensions for spectral estimation. In this case, the extension can be made by linear prediction [10],
or band-limited extrapolation [11].

Several AR models are proposed for the 2-D spectral estimation in the literature [12]-[19]. It is known
that the primary issue with the 2-D AR modelling is the choice of the prediction error mask and the order of
computation for the recursive model. Jackson and Chien [12] have discussed the different quadrant AR models
to obtain an estimator that is more nearly circularly symmetric. Kumaresan and Tufts [13] have described a
similar method for a simultaneous frequency and wavenumber estimation. The order of this model [13] is the
highest allowable, i.e., an M x N prediction error filter for M x N array of data.

Jain and Ranganath [14] suggest the use of semicasual and noncausal models. For the semicausal case
the prediction error mask includes samples in the past of one direction but uses the past and future in the other
direction. It is shown that this estimate is not strictly all-pole; a numerator term is also generated. Woods [15],
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Newman [16], Cadzow and Ogino [17], and Tjostheim [18] have also proposed using AR modelling to obtain a
spectral estimate.

However, all of these AR models [12]-[19] have been developed without use of 2-D lattice parameters.
The first fundamental approach to the use of the reflection coefficient approach to the modelling of 2-D fields
was made by Marzetta [20]-[21] who developed a class of 2-D minimum-phase digital filters involving a sequence
of parameters called reflection coefficients. This method was successfully applied to the design of 2-D recursive
filters [22] and linear predictive coding of images [23].

In this paper, a new AR technique is developed for estimating the spectral characteristic of a 2-D random
field from its autocorrelation function. The theory is based upon the recently presented AR lattice modelling of
2-D fields [25], [27]. The results outlined in the succeeding sections can be applied to any 2-D autocorrelation
function of given dynamic 2-D systems. The proposed method estimates the 2-D spectrum stage by stage and
does not require a priori order determination. The determination of the stability of 2-D lattice AR models is
made using 2-D lattice parameters computed at each stage, as in the 1-D case.

In Section 2, 1-D lattice parameter theory is briefly reviewed. It is shown how to calculate the lattice
parameter factors from the given autocorrelation function. Moreover, the forward, backward and Burg’s methods
are unified in a matrix form of the prediction error sequences. The quarter-plane AR lattice parameter theory
is developed as a natural extension of the 1-D lattice theory in Section 3. Starting with a given autocorrelation
function, three lattice parameter factors are obtained at each stage. Lattice coeflicients are then used to generate
four prediction error filters for successive lattice parameter model stages. The technique does not involve
modifying the correlation function, and updates the prediction error filter coefficients. Lattice parameters
are computed by minimizing the mean-square value of the prediction error fields as defined. In Section 4,
quarter-plane AR modelling is extended to the asymmetric half-plane. Two asymmetric half-plane models are
discussed with different recursion directions. The algorithms indicate how the appropriate asymmetric half-
plane parameters are calculated from a given autocorrelation function. Synthesis model conditions for lattice
model stability are described in Section 5. In Section 6, structurally stable quarter-plane lattice models are
discussed. Finally, in Section 7, several numerical examples are given to support the theory.

2. One-Dimensional Autoregressive Lattice Modelling Using the

Correlation Values

Lattice parameter modelling of one-dimensional stationary signals is based upon the following equation:

e(nt1) (k) — K(n'l'l)e('n) (k)* (1a')
where |
e (k) = [e§ (k)e™ (k)] (1b)
™ (k)" = [ (K)es™ (k — 1) (1)
and
K™ — [ _I:(n) _kl(n> ] (1d)

The forward and backward prediction error sequences, e§"+1)(k) and e,(,n+1)(k) respectively, for the
(n + 1)-th order lattice model stage are calculated from the error sequences of the (n)-th order lattice model

stage.
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The lattice parameter factor k(®*+1) is calculated using the output prediction error sequences of the
previous stage. Thus starting from n = 0 with e&o)(k) = e,(,o) (k) = y(k), where y(k) is a given input sequence,
it is possible to calculate forward and backward prediction error sequences from (1a) for successively higher
order lattice models. The lattice parameter reflection factor can be computed by minimizing the mean squared
value of the prediction error sequences. The following mean squared error is defined by the (n + 1)-th order
lattice model

QD — Ble™ ) () A pe D (k)] (2)

where E[-| denotes the expected value over a block of data. In (2) Ap = diag.matrix[\; Xz]. The A; and )y
are arbitrary weights, taken to be either 0 or 1, to be associated with the expected values of the forward and
backward prediction error sequences, ey, e; respectively.

The results of this minimization are summarized by the following equation.

(D) _ E[e™" (k)*TA pe™ (k)*]

F— 3
E[e™7 (k)*IA pIe™ (k)*] ®)
where 1 is the anti-diagonal unity matrix and will be discussed in the next section:.
The following methods are widely used for the computation of k(™*1) in the literature [7], [24].
a) Forward Method (A =1,A2 =0);
g _ L 00k~ 1) (4a)
! Eley™ (k1)
b) Backward Method (A = 0,22 =1);
o) _ Blef () — 1) (th)
Elef (k)]
¢) Burg’s Method (A = X2 = 1);
2E[e(™ (k)el™ (k — 1)]
gty f b (4c)

BURG ™ g™ ()] + B[l (k — 1)]

Since the quantities e&")(k) and e,(,") (n) are sums of weighted present and past values of the input y(k),
the numerator and denominator of (4a)-(4c) can be expressed as the weighted sum of correlations of the input
vector Y. An algorithm based upon this observation can be expected to be computationally efficient, if the
correlations of the input signal are known since it is not necessary to update the error sequences at each lattice
stage.

It is possible to write the forward error signal as

M (k) = Y™ (kyw™ (5a)
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where

Y (k) = [y(k), y(k — 1) - y(k = n))”

W = [wfPuf . wgn)]T

Similarly, e{™ (k) can be written
e (k) = Y TW ™

where I is extended to the appropriate order. From (5) and (6),
e (k — 1) = YT
where
T
W) = [wo )
Substituting (5a) and (7a), into (1a) yields

(nt1) y(n+1)" oT wWn+1)
e (k) _
e£n+1) (k)

OT Y(;»‘+.1)T i“}(‘n:+1)
where

wrtl) — W) . gr+DTW )
It should be noted that the initial condition for the weighted factor W is

w©@ = 1]

(5b)

(5¢)

(6)

(7a)

(7b)

(8a)

(8b)

(&)

The numerators of equations (4a)-(4c) can now be rewritten using the definition of the error signals in

terms of the weight vectors
B (R)el™ (k - 1)] = E[W™ YDy () TR ()]
= WOIREAHDTW )
where R(™ is the correlation matrix of the input signal.
ryy(0)  Tyy(1) T ryy(n)
R™ — Tyy(—1)  1yy(0)

. Tyy(1)
Tyy(—n) o Tyy(—=1)  7yy(0)

Since the correlation matrix in (10) is symmetric and toeplitz, (9) can be written as summations:

n
EeP®eM k-1 = )Y wPw(,,,
$=0
n n
+ (1) [Z wz(n)win—)z + sz(n)wgl—)ﬁz}
=0 =2
n n
b o) [zwg%::z_l+zw§">wf:9,.+3]
i=0 =3

2
oot ryy(n+ Dl
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The denominators of equations (4a)-(4c) can be found by using similar arguments. However, the following
recursion is generally used;

QW =r,,(0) (12a)

QM = g1 (1 _ k(nf) (12b)
Equation (12) is used to compute the denominator term in (4) to calculate the lattice parameter reflection
factor k(nt+1),
3. Quarter-Plane Autoregressive Lattice Modelling

The basic theory of the quarter-plane AR lattice parameter modelling for a given stationary random data field
has recently been developed in [25]. The prediction error fields, corresponding to the forward and backward
prediction error sequences in the 1-D case [24], are defined by the following equation:

e D) (ky, k) = KB e (ky, ky)* (13a)

where (n) = (n1,ns2) is the order of the model and (n+ 1) = (n; + 1,n2 + 1). The error fields are defined by

T
egi:);(kl, kz) = [6(()%) (kl, kz)ef(l)) (kl, kz)e:(lx’ll) (kl, kz)e((,ﬁ) (kl, kz )] (13b)

eGP k1, k) = [eF (b, )Ty (ks — 1, k)

el 1)(,€1 - 1 kz — 1)60 1 (kl, k‘z - 1)] (130)
and
1 _kgl(ll) k(n) k(n)
’ n n
o _ | ko 1 ’“( > “’“( > (13d)
QP _kgﬁ) k(n) 1 kl )

D
Kg}g can be written in a more compact form as
K0P =1~ kOP — kPP — k31 (13¢)

where I is the unity matrix and P, i, P are permutation matrices defined

0 0 0 1 0100 0 010

- 1 0 ~ 0 0 0 1

- |00 L0 |1 0000 5 (13f)
01 00 0 0 0.1 1 0 0O
1 0 0 0 0 01 0 01 00

™ (ky, k2), (4, 4) € Dgp; Dop = {(0,0),(1,0), (1,1), (0, 1)}
()

are defined as the quarter-plane prediction error fields for the (n)-order lattice model. ki ,k(n) and k[(,,nl) are
the 2-D lattice parameter reflection factors. Assuming that they are known, and starting from the zero order
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model (n) = (0), with egg)(kl_, k2) = y(ki,k2), (i,5) € Dgp, the inital random field generates four prediction
error fields; namely eg’l]) (K1, ks), where (i,5) € Dop. The data of these four fields; are then combined linearly
to calculate the prediction error fields of successively higher order stages. The generation of the prediction error
fields is depicted in Fig. 1. In generating the prediction error fields of the (n -+ 1)-th order model, the terms
of each of the four prediction error fields of the (n)-th order model are weighted and combined linearly in four
different ways. In Fig. 1 the error field term in the small square is weighted by unity, whereas the other three

terms are weighted by Ic&%"’l),kg?rl) and k(()ﬁ']'l) respectively.
— 2,
l X X X X X X X X

m-1 m-1)
ke &y, k) K e &,k
x X %4 0.0 X e opox ! )
(@) ®
x x x X x X X X

T k, % X X

%4 X >I< 1(— k, X
v
_1 -
ke ® Dk K, e® V)
X X X 11 x x X 0,1x

© @

Figure 1. The quarter-plane error fields of order (n — 1) used to generate prediction error fields of order (n)

Starting with four data points in the upper left hand corner of each of the four prediction error fields
3—1)(1431,192),(1', i) € Dqp, the data is processed as indicated in Fig. 2 to calculate the four prediction
error fields of the next higher (n)-th order lattice model. The reflection factor matrix, K(QI? is assumed

to be symmetric, indicating that the weights applied along the same column, the same row, and the same

X

major diagonal are respectively invariant. The assumption of quarter-plane data propagation is not particularly
restrictive and leads to a quarter-plane AR model.

In order to calculate the lattice parameter reflection factors at each stage, the expected mean-squared
value of the prediction error fields is minimized with respect to the reflection factors. The following mean-
squared error is defined by the (n + 1)-order lattice model.

T
QEFY = EeED (ky, ko) Agrely Dk, k)] (14)

where E[] denotes the expected value over the field of dimension (Ki — n1)(K2 —n2). In (14), Apg =
diag.matrix[A; A2 Az Ag]. The Ay, Az, A3, Mg are arbitrary weights, taken to be either 0 or 1, to be associated
with the expected values of the four prediction error fields; eo,0,€1,0,€1,1 and €o,1 respectively. Substituting
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(U}
eao e(l) (W]
> Q0 e
T Teee — 1700
o
e @©
10 €Lo
y(kl’kQ) ©= - o >0 00 » > el—’o,
o
el,l;D N Kg)l, 1 KS)P €1,
) QHZ 3z o —>Dgdz,z > =51,
eal e ®
. . 01 €o0.1
> coe—» > - .
@
T T T T T

-1
™ )(kl-—l,kz—l)o—]—»

-1
e((ll‘]l )(kl’ k-1 0—1’—

| : 2
| -

Figure 2. Generation of 2-D quarter-plane prediction error fields (analysis model); (a) internal block structure, (b)

block interconnection.

(13a) into (14) results in an expression which can be minimized with respect to lattice model reflection factors.
The results of this minimization are summarized in the following equation.

1
Rggkg?’ ) = rgg (15a)
where
(m _ n)]*?
RGY = [R®] " (15b)
T
K [k 43 ] 150
and
3
rgp =[] (15d)

(n+1)-th order new prediction error is found by substituting (13a) into (14). Simplifying the result
yields

n+l n) 1, m+1)T5(m), (n+l ,
Qar = Qgp — 5hgr ) RGPKGE (15e)
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If the error correlation matrix Rgll;). is positive definite, the minimum mean square prediction error will decrease

with successive stages.

The terms of the symmetric Rg}g matrix and r(QI}l are defined in Table 1 for values of A1, Az, Az, Aq

equal to unity corresponding to the minimization of expected value of the prediction error fields respectively.
In Table 1, the term, ¢g}2 is the error correlation matrix,

T
W3 = EleP k1, ka)*eGp (k1,k2)"] (16)

Table 1. Prediction Error Covariances for the Quarter-Plane Model 1

R | ¢5P0[2PApqP]

R | vSpolPApel+1ApgP]
R | yJ20[PADP + PADQP]
RY | v3po21ADc]]

RS | v5poliApeP + PApol]
R | v5pol2PADQP]

rD | ¥9polPApg + ApoP]
r | 9SBollADg + Ape

D | ySpolPApg + ApoP]

From Fig.2, it is possible to express all the shifted error fields in e(ng(kl, k2)* in terms of sums of weighted
present and past values of data field. A 2-D stationary random data field is given by the following matrix where
ki=1,2,...,K1,ka=1,2,...,K>.

y(1,1)  y(1,2) - y(1,K)
y(2a 1) y(2’ 2) T y(2, KZ)
Y(ky, k) = : : (17)
y(K1,1) y(K1,2) --- y(Ki, K2)

An algorithm based upon this observation can be expected to be computationally more efficient than the
previous algorithm in [25]. If the correlation matrix of the data in (17) is known it is not necessary to update
four prediction error fields eg,0,€1,0,€1,1, and eo,1 at each stage. It will be shown that updating the coefficients
of the prediction error filters is sufficient to compute the lattice parameter factors.

A. Calculation of Lattice Parameters from the Autocorrelation Function
From the 2-D lattice analysis model in Fig. 2, the prediction error fields can be written as

T
el (k1 ka) = YS}:) Wz(,nj)a (4,7) € Dgr (18a)
where
T . . T
Y =lygp (0 y9p (I (18b)
T - . T
W = b (0); -+ B (ni)]” (18¢)

! [asjlolbij] := Z Z aibij
7 4
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with
Yor®) = [y(ks — p, k2) - y(ks — p, ky — )] (18d)
b7 (®) = b7 (0,0) - b (5,15)] (18¢)
p=0,1,...,nq
where
@], (i) € Dor

is the coefficient matrix of the prediction error transfer function, B( )(zl, 22) which is defined as

EM (21, 22)

B (21, 2) = Y Groza) (19a)

with
B (21, 22) = Z[e( (k1, )] (19b)
Y(zl, 22) = Z[Y(kl, kz)] (190)

where Z[-] denotes the 2-D z-transform.

The formulation of this algorithm (2-D extension of Levinson’s algorithm) is given in reference [25]. Hence
it will not be repeated in this paper. From (13a) and (19a}, it can be shown [25] that

B =1B{Y) (20a)
B =1B{1 (20b)
B{Y =B{YI (20c)
with
B 2 b} ea) (20d)

where I is given by (13e) extended to the appropriate order. Fig.3 shows the support of the filter coefficients
for the quarter-plane.
Substituting (20) into (18a) yields

e (b, k2) = Y3R L;W®,  (i,5) € Dop (21a)
where I is the unity matrix. Ij0,I1,1, and Ig; matrices are defined in an appropriate order as

o I (o} i i (o)

11,0 = yA1,1 = 3l =
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An,
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e
(b) sy
|
__—'__’
N, ny
+“1 ?"1 4o,
N N+ ke T N+l = 7
1 E & S
& ey .-‘;.e"".-" J
©) T o
4"-!: 1 ] 5 il 1 .i'"-'..:".“‘
| - —_—
N, n; 1 N,+1 n,
(@) n, ©)
N o
1 ;-'///’,
@ | s
- —
(I N,* n,

Figure 8. Geometry of the recursion for the quarter-plane model.

It is necessary to obtain the shifted prediction error vector, eg}g (K1, kg)* for the computation of the error

covariance matrix 1,[18}3, in (16). From (2la), eglp)(kl, k2)* can be written as
e0p(kn, ba)* = YOHDIWEY
where

¥® — block diag [Y® Y@ iy iy

i = block diag.[Io,ofILOfIl,l310,1]T
and Wl(,?z is the augmented version of ngg defined by
W = B (0):--- BE" (n;):07]"

with

substitution of (22a) into (16) yields

(m) = cmiD o)
&) = BW, | TYSHOYSYiw,, ]

where
=W o) m) ) g |
Wbo,0 = Wbo'o:WbO,O:Wbo‘o:Wbo,0
Define
A n n T
g = By v
60

]

(22a)

(22b)

(22¢)

(22d)

(22¢)

(23a)

(23b)

(24)
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Thus (23) can be rewritten as
=(m7 = (m) -
@ _ ri @+ )ioy
¢QP - Wbo,o I Réry-'- )IWbo,o (25)
The augmented autocorrelation matrix 1?,,81;+1) in (25) can be written more explicitly by defining

T
R~ BV S

R® = U o R (26a)

where U is a 4 X 4 matrix with all entries equal to unity and ® denotes the Kronecker product [26]. The block
toeplitz matrix R™) is given by

SE A
(m) _ —1 RO ..
R, = f R gn) Y (26b)
R RY R{™
‘with
ryy(P,0)  ryy(p,1) e Tyy (P, n2)
ryy(P, —1)  1yy(p,0) e Tyy(p,n2 — 1)
RI(JH) = : (26¢)
o Tyy (P, 1)
Tyy(P; —n2) T Tyy (P, —1) Tyy (P, 0)
and
RD =R®™", p=0,1,2,...,m (26d)

where
[rys (@, Dlyog—p—q
is the given finite lag autocorrelation matrix.
From Table 1, (25) and (26), one can readily see that the 2-D lattice parameters can be computed from

the autocorrelation matrix of the given process and updated coefficients of the forward? prediction filter, u”;l(,?z .

B. Computational Issues

The direct calculation of the error correlation matrix in (25) requires approximately 64n3n3 computations.
However, by considering the symmetry of Q/Jgg along with block toeplitz property of R,g,ﬂ) and toeplitz form
of R,I(Dn),p =0,1,...,n;, computational complexity-can-bereduced substantially.

Due to the symmetry in 1/)83.) only ten prediction error autocorrelation (or crosscorrelation) are needed.
For this purpose, define

¢, (—p,j—q) = ElelP (k1 — i, ks — 5)e® (ks — p, k2 — ¢)]; (i, 5), (p, q) € Dop (27)

21n [25], the first prediction error field eg,o is named as forward prediction error field. e1,0,e1,1 and eg,1 are the backward
jelds.
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From (25) and (26), ¢ g‘}ep ,(i—p,j — q) can be rewritten as
Ta
ff’((a?;ep,q (i—p,J— q) = Wz(:g IT R(n+1)Ip,qW(n) (28)
from (21a), (28) becomes
6@, (i—pj—q) =W REDWE) (29)

since R,_,(,2+1) is block toeplitz and from (26b) Rq()n) = R(_I:,), p=0,1,...,n1; (29) is written as

n1+1
1 -~
¢, G-pi—aq) = Zb(‘” OREHIBE

ez 1i€p.q

e @7 o m+l)
I (N
+ Y Y B ORPVRRE

1=0
()" n+1)z
+ O+ HREGDEE ()] (30)
From (26c), each of the internal multiplications can be further simplified by considering the toeplitz property
of Rp,p=-n1—1,...,m1 +1

na-+1
T 1)p 2 N
B (m)R{T BID(n) = 1y (k,0) Z B (m, )b (n, t)

na+1 no+1l—w
(N “~
+ Z ryy (k, w) Z bz(-,j)(m, t)bgfl)(n,t +w)
w=0 t=0
na+1 no+l—w
+ Z Tyy(k, —w) Z b(n) (m, t +w)b{P (n, 1) (31)
w=0

Applying the symmetry property of the given autocorrelation; i.e. 7y (p,q) = ryy(—p, —gq) and substituting
(31) into (30) gives the final equation in (32). For convenience superscript (n) on b;; and by, can be dropped.

ni+1nz+1
g, (i—pi—a) = D Y ryy(0,00bij(m, t)bpq(m,1)
m=0 t=0

ny+1lni+l—kna+1

+ Z Z Z Tyy(k,0) ( i, (M, t)f)p,q(m +k,t) + f’i,j(m + k,t)Bp,q(m,t))
m=0 {=0
'n,1+1 ni+1no+l—w

+ Z Z Z Tyy (0, w (ki,j(ma t)f’p,q(m’t +w) + Bi,j(m,t + w)f)p,q(m, t))

m=0 w=1
ny+1lni+1— kn2+1n1+1 w

+ Z Z Z Z [Tyy(k’w) (Bz’,j(m,t)f)p,q(m—i-k,t—l-w)
m=0 w=1

B (m + byt + w)bpg(m, 1)) +

ryy (b, —0) (B (m £+ )by g(m + b, 1) + By (m + b, OBpg(m,t +w)) | (32)

Now, the com»utation of 'gbén};) in (25) with (32) requires approximately 10n2n2 computations.

4. Asymmetric Half-Plane Autoregressive Lattice Modelling

In this section, two asymmetric half-plane autoregressive models are proposed for modelling of a random field
from its given autocorrelation matrix. The first model is recursive row by row and reported earlier [27]. The
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second model is given in this paper and recursive column by column. It will be shown by numerical examplés
that these AR lattice models may lead to different results because of geometry of their error prediction mask.

A. Model 1
The prediction error fields are defined by the following equation [27]:

1 1 *
efrm ) (k, k) = KT Vel (ks ko) (332)
with the following initial conditions;
€%V (b1, k2) = y(k, k2), (i) € Dup, (33b)
where
Dup, = {(Oa 0),(1,0),(1,1),(0, 1)’(1a"'1)} (83c)
(m) (m)* L ’
erp, (k1 ko) = [eQP (kl,kz):eg,;l(kl,@)] (33d)
T
e (ku, ko) = [ " (kay ka)eS), (ky — 1, ks + 1)] (33¢)
and
Kgl} —I_kg(l))Pl,O—k Pll“k 1:’01—16( VP11 (33f)
with
P o] [ P 0 |
Pio=| oo oo ver ve|oes [5Pra= | cee e e b | (33g)
0o 1 0 0]0 0 0 1 oo
_ LT
i o) '
0] 1
Poi=| v oo oo oo | 3Py = | (33h)
0 0 0 1 0
1 0 0 0|0 |

The prediction error vector eg}g(kl,kz) and permutation matrices P,I, and P are defined in (13) for the
quarter-plane case. It is interesting to note that if the lattice parameter value k;,_; = 0 then (33a)-(33g)
reduce to the quarter-plane model in (13). This property indicates that asymmetric half-plane model contains
quarter-plane model.

Starting with the given initial random field, ez(.g) = y(k1, k2), (4,7) € Dgp, , the data of these five fields
are then combined linearly to calculate the prediction error fields of successively higher order lattice stages. The

generation of prediction error ﬁelds 1s shown in Fig. 4. Starting with five data points in the upper left hand
corner of each of the five fields; e )(kl, k2),(i,7) € Dup,; the data is processed as indicated in Fig. 5 to
calculate the five prediction error ﬁelds of the next higher (n)-th order lattice model.
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Figure 4. The asymmetric half-plane (Model 1) error fields of order (n — 1) used to generate prediction error fields of

order (n).

The calculation of the four lattice parameter reflection factors at each stage is similar to the quarter-plane
model in Section 3. The following mean-squared error is defined by (n+ 1)-th order lattice model

T
le;l) = trace [eglj;l)(kla kz)ADHeglz;tl) (k1, k2)1 (34)
where
Apy = diag.matrix [Al A2 Az Ag As] .

The i, 4 =1,2,...,5, are arbitrary weights taken to be either 0 or 1, to be associated with the expected values
of the five prediction error fields in (33a). Similar to (15a), the results of this minimization are summarized in

the following equation
ny , (n+1 n
R kiR =T, (35)

where Rgll),l and rgllll are the symmetric correlation matrix and vector with an order of 4 x 4 and 4 X 1
respectively. kg-l}l is defined as

T
n T.. (@
i, = [ (36)
Substituting (33a) into (34) and simplifying the result yields

n+1 n 1. m+1)T(n) . (n+1
QY = qff), - skEH Y RER kG (37)

as in the quarter-plane model, if the correlation matrix Rgl}),l is positive definite, the minimum mean square

prediction error will decrease with successive stages.
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Figure 5. The analysis model for the asymmetric half-plane (Model 1).

The components of Rg}l and rgllll are given in Table 2. In the following section, it will be shown that
it is also possible to express the error correlation matrix '¢'g1121 in terms of the sums of the weighted present
and past values of the data field in (17).

From (33), the prediction error fields can be written as

T
ez(,l;)(kh]%) = Yglizl Wz()?,) » (4,5) € Dup (38a)
where
(n) @ Ay @7 T
Yyp, = [yﬂpl (0):--- ‘Yup, (nl)] (38b)
| (m) mT oy @7 !
| w = [bi,j (O):- - b(™ (nl)} (38¢)
18
with
i Y0 = [ylks — ks +ng) - ylks — Lkg) -+ y(ky — Ly — n)]” (38d)
| . T
b3 W = [ 1 —ng) - 6P (1,0)--- 55 1,m)| (38¢)
} l~=0,1,...,n'1
where o
‘ [ (0, 0)] i (i,4) € Du,
' p=g,q=ns

is the coefficient matrix of the prediction error transfer function Bi(?) (21, 22) defined in (19a).
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Table 2. Prediction Error Covariances for the Half-Plane Model

R(n) ’pgllepP{OADHPl,o]
R(n) ¢g1;)>0[ PToApuPi1+PT ApaPi,]
R(n) (n)o[P oAprPo1+ P ApaPi]
R(n) ¢§?}0[P{OADHP1,_1 +PT_ ApgPi]
R(n) 'l'bglP)’o[ ’{,OADHPI,—l + P{_IADHPLO]
R | 9P T AprP1,]

(ll) (n)O[PTlADHPO 1+ PO 1ADHP1 1]
R | Bo2PL,ApHPos]
R(n) ¢§?130[P0 1AprPi, 1+ P{,—1ADHP0,1]
R(n) (n)o[sz—1ADHP1 —1]
R(n) 1,/)%1110[ oApH + ApaP1,]

n) ¢HP0[P1,1ADH + ApyP1 1]
R(n) o[PY Apn + ApuPo,]
R(n) glgo[ T _1Apm+ ApaPi,1]

Then, the shifted prediction error vector, eglj),l(kl, k2)* in (33e) can be written as

ey — i, ks — ) = Y W (i,5) € Dar,

where
" [ (T T 1
W = (0T (0)i-- 1B (m)
2-(I P . ea (T o]
W = B (05 B (0T
a~ -,. T . .
Wi = [B7(0F 6 "
% I o m)T . ea ()T ]
Wi = LOT:bgﬁ) (0): -+ B (my)
< T
Wi, = [oriE®] o) B (n)
with

BN (1) = [o B (1): O]T
) = [0 " (l)*O]T

~ . . T
B = [O:O:bgﬁ) (l)]
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(40b)
(40¢)
(40d)

(40e)

(41a)
(41b)

(41c)
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B (1) = [oioibgﬁ)T(l)] (41d)
B (1) = [bgf‘_)f(l)ioio] (41e)

1=0,1,2,...,n,

Then, ¢g1131 matrix in Table 2, can be written by using (39) as
n s’ T *
Vim = [l (s, ) e (b, ko]

=07 5 (n+1)=n
=W R W (42)

with r

W = | W iwm @ iy () i ()

W= [W,,o,o.w,,m Wy, 'Wbo,l‘wbl,_l]

=(m)

where R, is a block matrix as in (26a) with an order of 5(n; + 1)(2n2 4+ 1) x 5(ny + 1)(2n3 + 1). Each block
matrix is denoted as R (Iyl) where

R® A® ... R®
) 2() =) -
R = R'—l Ry B (43a)
: Rgn)
R . R® R
with
Tyy (%, 0) Tyy(8,1) -+ 1yy(i,2ns — 1) Tyy (4, 2n3)
Tyy (3, —1) Tyy (%, 0) ryy(i,2ne — 1)
Rgn) - (43b)
Tyy (3, —2ng + 1) Tyy (i, 1)
Tyy (1, —2n2) T ryy(4, —1) Tyy(i,0)
and
~(n =~ (N T
/O _ @ (430)

The direct calculation of the 1/1%1}21 in (42) requires approximately 53n3(2n,)® computations. As in
the quarter-plane case discussed in Section 3-B, symmetry and block toeplitz properties reduce the number of
computations to approximately 15n3(2n2)®. The final equation to calculate is the same as in (32). (ng + 1)
term in the upper bounds of the summations will be doubled; i.e., 2(ng + 1). However, a different updating
procedure is necessary to update the coefficients at each stage.

From (42) and Table 2, it is clear that it is possible to calculate lattice parameter factors from the given
autocorrelation matrix and the updated weighting sequences.
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The first four prediction error fiel

The prediction error fields are defined by the following equation

with

where

and

with

given in (33g).

1 1 *
eﬁ?pt My, kg) = Kgl;; )e(f?}z(kl,kz)
(O)(kl’kz) (k17k2)’ (7"]) € DHP2

Dyp, = {(07 0): (17 O)a (17 l)s (0’ 1)a (_1a 1}

T
e, (b1, ka) = [eQP (b, I )zel 11(k1,kz)]
n )T - T
65{12'2 (kl’ kZ) = [e(Ql:)’ (kla k2):e(_1),1(k1 + 1, k2 — 1)]

K& =1- kP10 — kPP — kVPo, — KPP 1,1

P_11=P1 1

ds of this model are the same as in Model 1 given in previous section.

(44a)

(44Db)

(44c¢)

(44d)

(44e)

(44f)

The generation of prediction error fields is shown in Fig. 6. The forward prediction error, eg ok, k) is

generated autoregressively using all data on columns to the left of the point being estimated and data at the
top of the point on the same line. This corresponds to normal raster scanning of an image starting at the upper
left hand corner proceeding top to bottom, left to right.

Since all other aspects of Model 1 and Model 2, are identical repetition will be avoided. The only difference

comes from the support of the coefficients of the prediction error fields which is given in Fig. 7. The equation
in (32) can be used to compute the prediction error correlations by changing (n; + 1) in the upper bounds to

(2’]7,1 + 1) .
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Figure 6. The asymmetric half-plane (Model 2) error fields of order (n — 1) used to generate prediction error fields of
order (n).
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Figure 7. Support domain for the coefficients of the transfer function; (a) quarter-plane, (b) Model 1, (c) Model 2.

5. The Synthesis Model Conditions for Lattice Model Stability

For both quarter-plane and asymmetric half-plane model, it was shown [25], [27] that it is possible to invert the
lattice structure into a synthesis model which is capable of generating the original field y(ky, k2) = eg,(j))(kl, k2),
from an input field,

u(kl, kz) = e((,lj)(kl, kz)

If the lattice parameters have to be calculated using sufficient stages so that the prediction error fields in the
last (N)-th stage are white noise, then u(ky, k») is a white noise field. The synthesis algorithms can be obtained
by partitioning equations (13a), (33a), and (44a) for all three models [25], [27].
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Fig. 8 illustrates a succession of cascaded synthesis model stages for the quarter-plane case. Starting
with
u(ky, kz) = e (ks kz)
as a random 2-D white noise field, assuming zero initial conditions for all of the backward prediction error fields,
it is possible to process the 2-D data along rows (or columns) to produce the original field Y (ki, k2).
The synthesis model algorithm structure (synthesis model) can be obtained by rearranging the first
equation of (13a).

eSN 1 (k1 kz) e (i, k)

Nk | _ @9 | o D=1k (452)
e (ky, k) er eﬂ\f‘l)(kl 1,k —1)

e§ ) (kx, kz) e (g, by — 1)

where

1+ kT RS

n n
g _ | “Ho 1 k5D ki) (45b)
QP _ k:(lﬁ) _ k(()ﬁ) 1 _ kf(l))
O - |

Kgﬁ is obtained by changing the signs of lattice parameters of the first row of the analysis model gain matrix
KOp.
QP

_ . ™
y&,kp) =e; j&k,k), (.)€ Dop ukky,ky) =eg ok k)
OUTPUT
« le—— o 00 < .&T
. . . > - -
D e )

N Kgp K
DQ}(Zl,Zz) > Q ——>ee0e ——»Dylz,2y) * ——
— > L ————> 000 ——> . L .

[¢}) ™)
ZQp(Zl,Z» ZQP (21,22)

Figure 8. The synthesis model for the quarter-plane case. Its block interconnection is the same as in Fig. 2(b).

The synthesis model for the asymmetric half-plane model (model 1) is given in Fig. 9. The synthesis
model equations can be obtained similar to the quarter-plane case. The transfer function of the single stage
lattice model is given as

- 1 oT
= (2 ,22) = K -
ap, (71, %2) HP | O Dpp(21,22) | (46a)
where
Dyp, (21, 22) = diag.matrix [2771 (27 277) 217" (27 ' 22)] (46b)

Kgl}),l is the synthesis model gain matrix. It is obtained by changing the signs of lattice parameters of the

first row of the analysis model gain matrix Kg‘}l in (33f). In this model, it is only possible to process the
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data along the columns (row by row recursion). However, the second model in Section 4-B requires column by
column recursion [27].

Since the lattice parameter stages are in tandem in the synthesis model a sufficient condition for overall
stability of the synthesis model is that each stage be stable. The following stability conditions are obtained for
the quarter-plane and the asymmetric half-plane models:

0) . N)
ylyko=e; ;& k), ()€ Dyp, ulk . kp)=eq gk, k)

OUTPUT INPUT
“« t—— o000 « e
> > XX » > I

~M ~WN)

Kup
» DHPl(Zl,Zz) > 1 o0® — DHPl(ZPZZ) | KHPI .
> > ese > S L .
(n ™)
Z]—]pl(lhlz) ZHPI(ZI’ZZ)

Figure 9. The synthesis model for the asymmetric half-plane (Model 1). Its block interconnection is the same as in

Figure 5.

The Necessary and Sufficient Conditions for the Quarter-Plane Model [25]:

i) |k§f(‘," <1 (472)
k(n) + k(n)
ii) “—(n")l <1 (47D)
1-kig
Ky - kY| 1
i) (—m————= < — (47¢)
) 1+ k{9 N
with
N = ma.x[N('wl, 'wz)]
where

B(()ﬁl)) (zla Zz—l)

N(wy,ws) = |——"-=
B(()?(l))(zl’z2)

lz1l=|z2]=1

The Necessary and Sufficient Conditions for the Asymmetric Half-Plane Models:

Model 1 [27]
i) |k3ﬁ>| <1 (48a)
o -
i) () M
1- kO,l Mg,l HP,
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with
Myp, = max[My0, My,1, M1,-1]
where (2.1)
21 L
M;,; = max Buglen,l) ;(4,7) € Dup,
3J Bo O(Zl, 1) ]zll 1 1
1
i) {km)’+|k(n>[+yk(n)‘+}k(n>l\ < (48¢)
Ngp,
with
Npp, = max[Nl,o:Nl,l,No,h N1,—1]
where @
B; (21,2
N;,; = max ——(1—2) ,(Z,]) € Dgp,
BO,O (z11z2) |21|=|Z2|=1
Model 2:
i) |k§f3){ <1 (49a)
ll
1 - k'(n)Ml 0 Mup,
with
Mpygp, = max[Mo,1, My,1, M_11]
where (L)
M = max | Du8tb2) |y € Dyp
1 BO 0(1 22) 2aj=1 ( ) 2
1
iif) jk(n)’+‘k(n)|+‘k(n)}+ 65, | < (49¢)
Ngp,
with

Ny p, = max[Ni,0, N1,1, No,1, N_1.1]

6. Structurally Stable Quarter-Plane Lattice Models

Recent investigations [28] showed that the synthesis filter is stable for every choice of parameters that satisfy
the constraint of orthogonality. This is based on a fundamental connection between structural stability and the
notions of passivity and losslessness [29]. The constraint for structural stability is given as follows

E(H) (Zl, Zz)E(n)* (251, 22) = I

for
|z1] = |Z2| =1

where E(n)(zl,zz) is the scattering matrix descrlbmg the n-th sectlon The asterisk (*) denotes I—Iermltlan

transpose (complex conjugate for scalars).
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For the quarter-plane lattice model as shown in Fig. 8, the scattering ‘matrix is

- 1 oT
S®W (21, 2) = KD
or(1,22) er | o Dop(21,22) (50a)

where
Dqp(z1,22) = diag.matrix [27 (271257 277!] (50b)
Consequently, the orthogonality requirement of structural stability in (50) is equivalent to
~ n ~ n <
KOPROD =1 (51)
Unfortunately, the 2-D lattice filter presented in Section 3 does not satisfy the constraint in (51).
Therefore, it does not have lossless sections, so its structural stability cannot be guaranteed.

To meet the orthogonality requirement we introduce following gain matrices for 2-D quarter-plane lattice
filters [31].

O = /14 B 4 0 4 B (52d)

Since the gain matrices K(ngl , Kg};),z , and I"(S}Qa , satisfy the orthogonality requirement in (51), the correspond-

ing 2-D lattice synthesis models are always stable. Hence, there is no need to test the difficult stability conditions

in (46) at each stage.
Due to the asymmetric nature of the gain matrices K_(,?I),l and Rglllz of the half-plane models in (33)
and (44), it is not possible to postulate orthogonal gain matrices. In fact, it requires additional constraints on

its parameters to make it stable.

7. Examples and Discussions

- In this section, experimental results are obtained from the analysis of several synthetic data sets using the
quarter-plane and two asymmetric half-plane models. The proposed parametric estimation theory is tested
with the data sets where the autocorrelation functions are exactly known.




ELEKTRIK, VOL.1, NO.1, February 1993

In all cases, it was assumed that the autocorrelation function originated from sinusoids buried in white
noise, so that the autocorrelation function is of the form
M
Tyy(m,n) = 0%6(m,n) + Z AZ cos[2m(mp; + ;)] (53)
i=1
where o2 represents the white noise power, M represents the number of sinusoids, A? represents the power of
the i-th sinusoid, and p; and v; are the frequencies of the i-th sinusoid.
The prediction error filters obtained from the calculated 2-D lattice parameters, factors as discussed in

the previous sections. (n)-th order power spectrum is determined as follows

) : 1
Sip (e e = (5)

) 2
B (e, eivz)

where (i,5) € Dgp,Dup,, or Dgp, which depends upon the method used to compute the 2-D lattice

coefficients.

Example 1:
In order to show the effectiveness and the resolution capability of the proposed method, the standard
problem of resolving two sinusoids in white noise will be considered. Table 3 shows the parameters used to

obtain the autocorrelation function for this example.

Table 3. Parameters of Example 1

M| 0% | A? 75 v

2 | 50100 022} 0.10
10.0 { 0.20°| 0.333

In order to determine the most suitable model and the method to be used to compute the lattice parameter
factors for this particular example, Table 4 is given. Table 4 shows the calculated third stage minimum mean-
square prediction errors with the quarter-plane and the asymmetric half-plane models for all possible ways to
obtain the lattice parameters. From Table 4, one can see that the least minimum mean-square prediction error
can be obtained by choosing the first asymmetric half-plane model and computing the lattice parameters by
minimizing the prediction error field, ef:))(lcl, ky). The mask of this particular computation is given in Fig.
4(b). Fig. 10 shows the contours of the power spectrum in the spectral domain. It is possible to observe that
the first stage model does not resolve any peaks in Fig. 10(a). The second stage model does resolve the two
peaks at different locations as shown in Fig. 10(b). Finally, the third stage model completely resolves both
peaks at exact locations in Fig. 10(c).

When the minimum mean-square prediction error approaches asymptotically to a certain value, it is
found that the power spectrum does not change. In this example, this asymptotic value is Qg’;,? = 6.7095994
which is larger than the variance of the white noise process, i.e., 0?2 = 5.0 in Table 3.
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Table 4. Minimum Mean-Square Prediction Errors of Example 1 for the Third Stage

A = diag. QB3
[1 00 0] | 0.90044282E + 01
[0 1 0 0] |[0.93301529E + 01
Quarter-Plane Model | [0 0 1 0] 0.34004499E + 02
[0 0 0 1] | 093774760 + 01
[1 11 1] |0.11636639E + 02
[1 00 0 0]]0.774183350 + 01
[0 1 00 0]/ 0.67095664E + 01
Model 1 [0 01 0 0]]0.11917221E + 02
[0 0 0 1 0]/ 0.86667349E + 01
[0 00O 1] | 0.10566658E + 02
[1 1 1 1 1]/ 0.14720403E + 02
[1 0 0 0 0]] 0.78074258E + 01
- [01 0 0 0] 0.84964503E + 01
Model 2 [0 0 1 0 0]/ 0.82337289E + 01
[000 1 0] | 0.70146882E + 01
[0 0 0 0 1] 0.78970849E + 01
[1 1 1 1 1] 0.18930582E + 02

However, the determination of the model for any given autocorrelation function still remains to be solved.
Initial investigations show that it may be possible to decide how to choose the best model without computing
the minimum-prediction error for each stage. Fig. 11 shows the independent autocorrelation points required
to determine (N)-order lattice parameter factors. It is interesting to note that both asymmetric half-plane
models require twice as more autocorrelation points in one direction than the other one. This result is the
direct consequence of their mask shown in Fig. 4 and Fig. 6 for Model 1 and Model 2 respectively. If one
examines the true locations of the peaks in this example, it will be seen that they are almost parallel to wsy-
frequency axis. From Fig. 4(b), it was noted that Model 1 requires more autocorrelation points in n-direction
of ry,(m,n). Thus, Model 1 gives the least prediction error and highest resolution of all models. This issue
was first discussed by Pendell [30] as directional prediction filters. Further study relating 2-D lattice model
determination is currently under investigation.

e
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Figure 10. Spectral density contours for example 1; (a) first stage, (b) second stage, (c) third stage.
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Figure 11. Support domain for the correlation function; (a) quarter-plane, (b) Model 1, (c) Model 2.

Ezample 2:

In this example, three sinusoids in the white noise are considered. The parameters of the autocorrelation
function in (45) are given in Table 5. The third stage minimum mean-square errors of quarter-plane and
asymmetric half-plane models are given for all possible values of A. From Table 5, it can be seen that the
second asymmetric half-plane model gives the smallest minimum mean-square error when the prediction error
field, e(()ﬁ)(kl,k:g) is minimized, i.e., Agp = diag.matrix[0 0 0 1 0].

Table 5. Parameters of Example 2

M| o2 A2 i Vs
3 0.025 | 10.0 | 0.20 | 0.15
10.0 | 0.22 | 0.25

10.0 | 0.32 | 0.35
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Table 6. Minimum Mean-Square Prediction Errors of Example 2 for the Third Stage

A = diag. QB3
[1 0 0 0] | 0.26482036E + 00
[0 1 0 0] |0.24030191E + 00
Quarter-Plane Model | [0 0 1 0] 0.12296895E + 02
[00 0 1] | 0.25060685E + 00
[1 1 1 1] |[0.13233264E + 00
[1 0 0 0 0]] 0.331594890 + 00
[0 1 0 0 0]] 0.54667306E + 01
Model 1 [00 1 0 0] 0.69675462E + 01
[0 0 01 0]] 0.83694248E + 01
[0 0 0 0 1] 0.39316775E + 00
[1 11 1 1]]0.11953115E + 02
[1 00 0 0] 0.36671070E + 00
[001 0 0 0] | 0.81138925E - 01
Model 2 [0 01 0 0]]0.12571514E + 01
[0 0 0 1 0]/ 0.37243524E + 01
[0 0 0 0 1] | 0.40820899E + 00
[1 11 1 1]]0.77485752E + 01

Fig. 12 shows the contours of the spectral density function for successive three stages. The spectral

peaks are completely resolved in-the-third stage as shown in Fig. 12(c). The contours in Fig. 12 constitute a
portion of the resolution of the peaks. Fig. 13 shows the half-plane description of the third stage.
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Figure 12. Spectral density contours for example 2: (a) first stage, (b) second stage, (c) third stage.
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Figure 18. The half-plane description of example 2 for the third stage.

8. Conclusions

In this paper, a parametric 2-D spectral estimation method has been developed. The theory is based upon the
appropriate extension of the 1-D lattice theory into 2.D case. It has been shown that it is possible to determine
the 2-D sspectral estimation of the given autocorrelation function by using lattice parameter factors. Besides
being a parametric method, it differs.from all-other-existing: methods,-in that the order determination problem
is eliminated. Examples show high resolution characteristics of the method in the spectral domain.

The author wishes to conclude this paper with the following suggested open research problems:
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+ 1) In Sections 3 and 4 only three different lattice models are developed. It is a major concern to investigate
all other possible lattice models.
’ 2) The minimum mean-squared prediction error was used as the criteria to determine the best model and the
,/‘ most suitable method to calculate the lattice parameter factors. This approach requires the computation
: of all the possible cases. However, initial investigations show that it is possible to determine the best
model directly from the given autocorrelation function. Hence, it is needed to develop a technique which
will enable us to select the model with the minimum error from its autocorrelation function.

3) What is the relationship (if any) between this lattice approach and the maximum entropy method [7?
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