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The problem of correct and efficient truncation of
computational domain of finite-difference methods used for
analysis of transient processes in infinite two-dimensional
regions with compact resonance inhomogeneities is solved.
The basis for the approach is the formulation and
incorporation into a computational scheme of the exact
“absorbing” conditions in a Cartesian grid.

The initial boundary value problem
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describes the radiation, propagation, and scattering
processes of nonsinusoidal E -polarized waves in the
space { }{ }2 , : ,g y z y z= = < ∞ < ∞R . The
inhomogeneities are given by real finite functions

( ) ( )0 0g gσ = σ η  ( ( )0 gσ  is a specific conductivity and

( )1 2
0 0 0η = µ ε  is an impedance of a free space) and

( ) 1gε −  ( ( )gε  is a relative permittivity).
In [1–3] we have already considered such

problems and have obtained there rigorous solutions by
finite-difference methods through the truncation of the
computational domain by a coordinate (in a polar grid)
virtual    boundary    enveloping  all sources and effective

 scatterers. In the present paper a similar solution for the
Cartesian grid is proposed. The main purpose of such a
change-over is to get rid of a number of essential
inconveniences    arising   from   discretization   in   polar
coordinates, where computer resources are not exploited
reasonably. The matter is that l , the discretization step in
time, and h , the spatial step, squared should be of the
same order of magnitude in order to ensure the stability
of finite-difference computational schemes in a polar
grid. That requirement increases the computational time
by a factor of 10 as compared with the operation in the
Cartesian grid, where l  can be comparable
with h . Another reason, noticeably strengthening a
negative effect of the first one, is associated with the
following physically justified requirement [4]: the
maximal size of the spatial grid mesh has to be at least
two times smaller than a typical size of the analyzed
object. Because of this, the large outer radius of
computational space is a cause for substantial reducing
the spatial grid meshes in an angular variable. One could
close the analyzed domain by a coordinate boundary in
the polar grid and solve the problem in the Cartesian grid.
However, such a straightforward solution poses a number
of problems in correct approximation of exact conditions
from one coordinate grid onto another one. This fact
properly sacrifices almost all basic advantages of  the use
of the exact “absorbing” conditions.

In the present work we suggest a solution of the
problem specified above and use all accumulated
experience for constructing exact “absorbing” conditions
such that they allow one to discretize initial boundary
value problems (1) in the Cartesian grid correctly and
efficiently. In all cases considered before, the basis for
constructing exact “absorbing” conditions was formed by
the radiation conditions for elements of an evolutionary
basis of signals propagating along various regular
waveguide structures [3] such as closed waveguides and
Floquet channels, horn-type waveguides, a free space and
so on. The properties of evolutionary bases (such bases
are invariable under changes of a type of a guiding
structure) have enabled the analyzed domains in open
problems  to  be closed  by  transverse   (with respect  to a
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Figure 1. Geometry of model problems (a) and examples
                                                                           of their numerical solution (c–d).
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Figure 2. Examples of numerical solutions for problems (1).

wave propagation direction) coordinate boundaries: one
boundary for one propagation channel of “outgoing”
wave. In the case considered below, we are coming up
against the necessity of “closing” one radiation channel
by four coordinate boundaries.  The analyzed domain is
constricted to { }4 3 2 1: ;L g L y L L z L= ∈ < < < <Q Q
(see Fig. 1,a). The problem of corner points (the points of
intersection of coordinate boundaries [5,6]) arises. It is
just this problem that receive our primary attention,
because the technique for constructing exact “absorbing”
conditions and algorithmization of arising “closed” initial
boundary value problems remains practically unchanged
[3].

In Figures 1 and 2 we give illustrative examples
of the numerical solution for problems (1). The fragments
of these figures display spatial distribution of the electric
field intensity for semi-infinite step-function of the
excitation ( ),F g t  at different observation times t  in
the: exponential horn with a dielectric lens (Fig. 1,b),
dielectric ellipse (Fig. 1,c; the source is placed near the
left focus), open end of a plane-parallel waveguide (Fig.

1,d), structure “radiator – finite metal grating” (Fig. 2,a),
parabolic radiator (Fig. 2,b), open resonator with
cylindrical mirrors (Fig. 2,c), and the near zone of
Luneberg lens with a metal screen (Fig. 2,d).

Below (see Fig. 3) we give one more example. A
teflon radiating element
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is placed into the aluminum sleeve
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and is exited by the ‘soft’ source



Figure 3. Simulation of the antenna for a radar for subsurface sensing.

( ) ( ) ( )22 2, 10 0.25 1.25 cos 1.2F g t z y t = χ − − −  ,

( ) ( ) 0g gϕ = ψ ≡ .

Here χ  is a Heaviside function. The closure of the

analysis domain is [ ]0.5 15L y= − ≤ ≤ ×Q

[ ]2.5 2.5z× − ≤ ≤ , the grid step size in time equals to
0.01; the value σ  is chosen in line with the assumption
that all dimensions are given in centimeters. The two-
dimensional figures show the distribution of the intensity
of the electrical field ( ), xU g t E=  everywhere in LQ
for various observation moments t . It is simulated the
realistic antenna used in the radar for subsurface sensing
(the product of the Turkish-Ukrainian Joint Research
Lab., TUBITAK-MRC, Turkey, headed by A. A. Vertiy).
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