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ABSTRACT

  Developed approaches to spectral estimation can be
grouped as parametric and non-parametric methods.  Non-
parametric methods are classical methods which are based
on periodogram and they use Fourier transform. In this
study, a parametric method is investigated. The two-
dimensional orthogonal lattice structures are applied to
spectrum estimation and the results are compared with the
classical periodogram.

I. INTRODUCTION

  The multi-dimensional digital signal processing has been
developing rapidly due to the fact that it has many
applications in various fields[1]. In the studies on image
processing, parametric modeling of the signal is a very
widespread approach.

  1-D lattice structures found applications in diverse areas
such as system identification, spectral estimation, channel
equalization, noise cancellation, analysis and synthesis of
speech. Lattice structures has many priorities. The
property of orthogonality allows the filter to be updated in
order, without recalculation of the previous lower order
filter coefficients. Also lattice algorithms have a modular
structure that makes them attractive candidates for VLSI
implementations.

  Because of the success of 1-D lattice structures, in recent
years lots of researches are made directed to the
development of lattice structures. First proposed 2-D
lattice structure is three parameter lattice filter[2]. This
structure lacks the property of orthogonality so that the
cascading stages may not lead to an optimum filter.
However, its simplicity is attractive and it has found
applications in many fields such as coding , data
compression. This lattice structure is then generalised  to
asymmetric half-plane case and  it is applied to the
solution of the digital filter design problem[3].

  A complete solution for the 2-D lattice structures is
presented in [4]. In this study, 2-D orthogonal lattice
filters are developed as a natural extension of the 1-D
lattice filter theory[5]. The method offers a complete

solution for the Levinson type algorithm to compute the
prediction error filter coefficients using lattice parameters
from the given 2-D augmented normal equation. Burg’s
matrix formulation is used to derive the Levinson type
recursions.  The method is applicable for both the quarter-
plane and asymmetric half-plane models.

  This theory is investigated by using sample
autocorrelation values of the original data fields which is
known as Yule-Walker approach and the method is
applied to spectrum estimation[6].The same theory is
investigated by using Burg’s method. It was shown that
Burg’s method has superiority over Yule-Walker method
for short data records since Burg’s method directly works
on original data fields without using sample
autocorrelations[7].

  In this study, the theory investigated by using Burg’s
method is applied to spectrum estimation.

        II. 2-D ORTHOGONAL LATTICE FILTERS

  In 2-D linear modeling, a stationary random field
y(k1,k2) is predicted by a linear combination of its
neighboring samples.  2-D linear prediction can be
expressed as follows:
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where ��� �� ��� s are prediction coefficients, � is the

prediction region mask not including the point �����  and

��� �� �� are axes for the data field.  The procedure starts

with generating the AR data field according to the
prediction error mask which may be quarter-plane or
asymmetric half-plane.  The 2-D AR data field can be
considered as a one dimensional array by indexing the
elements in the prediction support region appropriately.
Depending on the indexing specified, for instance the first
quadrant backward prediction error filter corresponds to
the forward prediction error filters in the fourth quadrant.
Unlike the quarter-plane case, the prediction of the last



element in the support does not correspond to any other
type of asymmetric half-plane models. The indexing
schemes used in this study are given in Figure 1 for the
quarter-plane case and in Figure 2 for the asymmetric
half-plane case. In the figures, N stands for the order of
the predictor.

           Figure 1 The indexing scheme for the
                                 quarter-plane case

      Figure 2 The indexing scheme for the asymmetric
                                     half-plane case

  The 2-D AR data in the indexed form can be shown as:
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The notation y((k1,k2)-i ) denotes the ith element before

y(k1,k2) and the subscripts p and q denote the first and last
elements in the array where p<q.

  The forward prediction error associated with the
prediction of the zeroth sample from the previous m
samples within the prediction region can be defined as
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  The backward prediction error associated with the
prediction of the mth sample(last element), from the m
samples prior to it in the prediction region can be defined
as
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  Let the m-by-1 vectors )1(
0

−ma and )1( −m
mg  denote the tap

weight vector of the corresponding forward and backward
prediction error filters of order (m-1), respectively. The
tap weight vectors of 2-D forward and backward
prediction error filters may be order updated as follows:

                    







Γ+








= −

−

)1(
)(

)1(
0)(

0

0

0 m
m

m
b

m
m

m g
a

a                (8)

and

                   







Γ+








=

−

− 0

0 )1(
0)(

)1(
)(

0

m
m

fm
m

m
m

a
g

g                 (9)

where )(

0

m
fΓ  and )(m

bm
Γ  are the mth order reflection

coefficients for the forward and backward predictors.

  In the Levinson order-update recursions, one can find
general expressions for lattice parameters, forward and
backward prediction error fields and error powers in more
compact form.  For p=1,2,..,m and n=1,2,..p,lattice
parameters;
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  The error propagation equations or the general form of
the orthogonal 2-D lattice filters is given by:
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where p=1,2,…,m; n=1,2,…,p and starting with
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for p=0,1,…,m, algorithm starts from the 0th order and
continues up to the mth order.

  The algorithm for the 2-D orthogonal lattice filter is
given in Figure 3.  M is the number of elements in the 2-D
prediction support region.

          Figure 3 The algorithm for the 2-D orthogonal
                                    lattice filter.

 III. SPECTRUM ESTIMATION

  Our goal is to estimate the power spectral density of a
random data field.  Developed approaches to spectral
estimation can be grouped as parametric and non-
parametric methods. Non-parametric methods are
classical methods which are based on periodogram and
they use Fourier transform.  According to the classical
method called periodogram spectrum estimation is
computed with the following equation;
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where N is the number of elements in the data field and
),( 21 wwY is the Fourier transform of the data which is

given as ),( 21 kky .

  Parametric methods assume a model for the expression
of the problem and coefficients of the model are predicted
from the infinite number of observations of the process.

The predicted power spectral density ),(ˆ
21 wwPx  from

the process ),( 21 nnx can be expressed as follows
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where constants ),( 21 kka s are coefficients of the AR

model.

  In spectrum estimation, AR spectrum analysis has the
following superiorities over periodogram: If signal-to-
noise ratio (SNR) is greater than 0 dB, AR spectrum
estimation has a better frequency resolution.  The
distortion that comes out of the side lobes and naturally
observed in periodogram is not observed in AR spectrum
estimation.  Third, for short data records AR method gives
a better prediction result.

  In 2-D spectrum estimation, another important point is
the mask used.  Predictors with single quadrant support
region are not sufficient especially when estimating the
sinuses in different quadrants. Single quadrant models
cause some distortion in the estimated spectrum. One
method to reduce this distortion would be to form a
combination of the spectral estimates[8]. Let
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two different quadrants, the improved estimation will be

       Generate the 2-D AR data field

      Compute the cross correlations

Compute  Forward   Reflection  Coefficients
Compute Backward Reflection Coefficients
               (Lattice Parameters)

      Update Forward    Error Fields
      Update Backward Error Fields

Compute  Forward   Filter Coefficients
Compute  Backward Filter Coefficients

Stage > M
stage=
stage+1

 END
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  Unlike the quarter-plane case, asymmetric half-plane
models does not have such a problem.

IV. SIMULATION EXAMPLES

  In this part, simulation examples for spectral estimation
are presented. The AR coefficients of the data field
consisting sinuses in noise are predicted with the lattice
filter and spectrums are obtained with the equation (14).

  Two sinuses buried in noise are generated with the
following equation 
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where �� ��� NNZ is white noise with zero mean. Signal-to-

noise ratio can be computed with the following equation
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where �
Z³  corresponds to noise power.

  In simulation examples, the amplitudes of all signals are
unit.

  In Figure 4-a, the spectral estimation of two sinuses in
different quadrants by using FFT based classical method
is shown. In this figure, frequencies are normalised to 2Π.
These sinuses are also estimated by using second order
quarter-plane model in Figure 4-b and by using second
order asymmetric half-plane model in Figure 4-c. These
figures shows that both the second order quarter-plane
model and the second order asymmetric half-plane model
has a better performance comparing to FFT based
classical method when the data dimension is short.

  In Figure 5-a, the spectral estimation of two sinuses in
the same quadrant by using FFT based classical method is
shown. Frequencies are normalised to 2Π in this figure.
Figure 5-b shows the sinuses in the same quadrant
estimated by using second order quarter-plane model.
Figure 5-c shows the same sinuses estimated by using
second order asymmetric half-plane model. It can be seen
that Figure 5-b and Figure 5-c has a better performance of
estimating the sinuses.

Example1
  Two sinuses at the points (-0.2,0.2) and (0.3,0.3) are
estimated with different methods. Data dimensions are

10X10 and noise variance �
Z³  is 1.
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Figure 4 -a  FFT based classical method
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         Figure 4-b  Second order quarter plane model

      Figure 4-c  Second order asymmetric half-plane model
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Example2
  Two sinuses  at the points  (0.1,0.3) and (0.3,0.1) are
estimated with different methods. Data dimensions are

10X10 and noise variance �

Z
³  is 0.25.
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            Figure 5-a  FFT based classical method
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      Figure 5-b  Second order quarter plane model

�� �� �� � � � �

��

��

��

�

�

�

�

Z�

Z
�

;

;

;

;

       Figure 5-c Second order asymmetric half-plane model

V.CONCLUSION

  In this study, the two-dimensional orthogonal lattice
structures are applied to spectrum estimation. Sinuses
buried in noise are estimated using both quarter-plane and
asymmetric half-plane filters. The results show that for
short data records, the method which depends on lattice
filter modeling has a better performance than the classical
periodogram.
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