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Absfiuct- In this prper, a nonlinear rll.namic
s-r-stem has been modelled by using fuzz;- neural
nehrork (FNN) topologr. In tbis technique, s1-stem
is dirided into several fuzzv operating regions and
Iinear reduced order models are used in each
region to achiere approximation. S)'stem itrputs
:rre dirided into several fuzz-v sets, and
membership functions for operating regions are
produced. The overall output of the model is
implemented b-v a defuzzilication method. Genetic
algorithms tvith simulated annealing is used for
obtaining FNN rveights. Genetic algorithm is used
automaticallv and efficiently searching for a set of
model lveights or parameters for better
performance.

I.INTRODUCTION

This paper presents a nonlinear dvnamic sy-stem
modelling with fi.rzzv neural netlvork using genetic
algorithms u'ith simulated annealing. The fuzz_r'
neural nettvork approach to nonlinear svstem
modelling provides a rva,v- of openning up the purely
black box approach normally seen in neural netrvork
applications.

In practice, man)- nonlinear rystems are approximated
by reduced order models, possibly linear. Horvever,
these models may onl;- be valid rvithin certain specific
operating ranges. lVhen operating conditions change,
a different model ma,r- be required to be used or the
model parameters may need to be adapted. One
approach to the modelling of nonlinear sy.stem is to
divide the whole envelope of the sy-stem operation
into sereral operating regions, and use local reduced
order model to apro\imate the system in each region
[]. The local models may b€ of ARMAX
(Autoregressive moring alerage vith exogenous
inputs) 121 form. The definition of operating
conditions is often vague in nature. It is generally not
possible to precisel.v* define slstem operating regions
and there can be orerlappings benreen yarious
operating regions. Fuzzy sets provide an appropriate
means to deline operating regions. The input space of
nonlinear system is dirided into several firzzy
operating regions and local linear model is used in

each region The overall output is obtained through
the center of grarirr.- deftrzzification

The basic principles of genetic algorithms for
problern soh'ing are inspired b1- the ntechanism of
natural selection Natural selection is a biological
process in rrhich stronger indil-iduals are likel5'to be
sinners in competing enr.ironment. Genetic
algorittuns use a direct analogy of natural erolution.
Genetic algorithms are global search techniques for
optimisation but thel' are poor at hill-climbing.
Simulated annealing has the abilitv of probabilistic
hill-climbing. Thus, the trvo techinques are combined
here to get a fine-tuned algorithm that .v-ields a faster
convergence and a more accruate search by
introducing a nerv mutation operator like simulated
annealing or an adaptive cooling schedule [3].

II. FUZZY NETJRAL NETWORK TOPOLOGY

FNN topologl shorvn in fig I is used for modelling a
nonlinear s!stem lvith fu24'logic and neural netrvork
[4]. FNN is constructed from four la1.ers. These are
fi:zzification layer, nrle la1'ers, function layer and
defuzzi-fication la1cr.

A-Fuzzi.fication Laver
The inputs of fuzzification la.rer are qvstem variables
used for identi$ing flvzy operating regions Fuzzy
sets like "lott","medium", and. "high* l5l are used
for qstem variables. Each neuron in this la.ver
conesponds to a fitz4 set, and the output of this
neuron is membership firnction of the fuzzv- set. In
this la1er, three qpes of neuron actiration frrnction
[6] are used. These are;
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I)-Rule La.v"ers
Rule layers implement firzzy inference.. Neurons in
thesc lalers use sigrnoid activation function. Each
input of neurons in the first nrle lay'er conesponds to
a fuzzy set. Each output of neurons in the second rule
la;-er corresponds to a membership firnction for
operating regions. These membership frrnctions can
be described as logical combination of sJ-stem
variables rvhich are transformed into fuzz-v'sets.

fitris hyq

Fig.l. FNN topologl.

C-Function Layers
Neurons in this laler implement the ARMAX models
for operating regions. Each neuron corresponds to an
operating region and it is linear. The outputs of
neurons are sums of weighted system rariables. The
ueights in function layer are Parameters of linear
models in operating regions. Any of operating
regions can be described as (4). Biases used in
neurons represent the constant terms in local models.

no nl

R : jt,(tS=la'y(t- i)+Zb',rft- i)+ci (4)
,=l j=t

where: y is system output, tr is qsem input, i; are

outputs of operating regions, nr is number of finq
operating regions, ni and no are time delays for
system inputs and system outPuts respectirely, au

and Do are parameters of reduced order model, and f

is time index.

D D efu zz iti c a t i o n La.ve r
The inputs of ne||Ion in this layer are the ouput of
operating regions and membership functions for
these operating regions. Defirzzification lal'er
implements the defizzifrcation uith center of graviry

mcthod and forms the output of FNN model. No
seights are used in this la1er. Center of gravity
method is given by (5).

^.. { r+9,0)90=L'i: (5)
r= l  S

/ -k
i = l

rvhere: p, is membership function for operating

region. .i; is output of linear model. nr is the number

ofoperating region, ! is output ofmodel.

III. GENETIC ALGORITHMS

Calculus-based search problems such as point to point
method used in man;- optimisation methods from a
singular point to nerl in decision space, using some
uansition rule to find ne$ point, are risb'because it
is a perfect prescription for locating false peaks in
manl' peaked search spaces. Some problems ma1'be
expressed by a parameter set. These parameters are
regarded as chromosome genes and can be structured
sith a string of values in binary form. GAs rvork
from a Nghly ralued database of points
simultaneous$ climbing many' peaks in parallel; so,
the probabilitl'offinding a false peak is reduced over
methods that move point to point. Mary- search
techniques need some auxiliary information to rrork
acceptably. For example, gradient techniques need
deriratiles calculated analyticall.r- or numerically to
be able to climb the peak. In conuasl, GAs don't
need this kind of secondar-r' information, the-v only
need objective firnction values. This characteristic
makes GAs more canonica:t. In fact GAs are not
considered as a mathematically guided algorithm.
GAs are stochastic and non-linear processes and a
final product containing the best or sFongest
elements of the prel'ious generetions tends to b€
carried forward into the follosing generation. In
other nprds, the rule is sunfi'd of the fnest. GAs use
random choice as a mechanism to guide a search
tonard regions of the scarch spaces and probabilistic
transition rules to get a trajectory for search.

GAs bave some different aspects from the other
optimisation methods:

l. GAs nor* rrith a coding of the parameter set,
not the parameters themseh€s.

2. GAs search from a populadon ofpoints, not a
single point.

3. GAs use objective firnction information, not
derivatives or o(her auxiliar-v knon'ledge.

4. GAs use probabilistic transition rules, not
deterministic rules [7].

tnitid population of size N is genenttd randomly.
fie user can define several stdngs if the user gueises
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the rnodel parameters for the different operating
region of the s-v-stem. User defined strings ma.v be
kept constant behveen generations so ttat aitua
parameter neighbourhmd of these is found faster by
GAs. In this paper no userdefined string is used.
G.As rvork behveen *rmpling instanti. Several
generations can be made for each sample. The
proposed algorithm can be summarised as follorvs.

l. Determine the parents according to fitness
ralue.

2. Reproduce the children from parents.
3. Apply simulated annealing to nes.population.
4. Calculate fitness value of each string.
5 Select fittest string as model parameters.

The mechanics o[ genetic algorithms consist of
copy'ing and snapping partial strings. Simple GAs are
composed of three operators : repruduction. cross_over
and rnutation.

IV. SIMULATED ANNEALNG

Simulated annealing (SA) is a stochastic
cornputational technique derived from statistical
mechanics to find near global minimum cost

temperature is studied in statistical meclunics. SA
searches minimal energy states by using random
processes. To improre simulated annealing. GAs can
be merged rvith SA. This improled a.lgorithm uses
SA crossoler and SA mutation operators instead of
standard ones.

The set of sl.stem component spatial positions
represents s.vstem configuration. If a rystem is in
thermal equilibrium at temperature ?, then the
probability r7g) tlat the s,-stem is in a giren
configuration s depends on the energ-v- E(s), and
follorvs the Boltzman distribution:

p = Ert) = ..*o[:-(sQ: E(21' or(q)- -'"'l- 
kr I

Ifp is greater than l, that means energSr of r is less
than energi of4, then configuration r ii accepted as
the nerv configu.ration for time i+ I . If p is leis than
or equal to { then configuration r is accepted as the
nerv configuration, rrith the probabilitv p. Thus
configurations of the higher energli. states may be
attained [8].

V. SIIUI.JLATION RESTJLTS

The q'stem given brr. (8) hai been stud.ied as a
nonlinear dynamic s]'stem [9] modelling,

, - t
.u'l, = 

[0.8 
- 0.5 exp ( - y! (t - t))trv,r _ tl

-[o.r*0.s.*p ( -yr(t -UIv.7-zl (8)
+uft -l)+0.2tt(t -2)
+0.1u(t -t)u(t -2)

Firstlr, FNN topology rvas determined. Four svstem
variables were divided into tree frrzury sets each.
Therefore, nvelr.e neurons rvere used in fuzzification
laler. Three opcritting regions and according to this
three local linear models were used in function laver.
Trvo lalers, tfuee neurons in each, rrere used in rule
lalers. Center of gravig method nas used in
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Fig. 2. Model parameters.

(7)

z1 (s) =
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(6)

where /c si Boltzman's constant ans S is the set of all
possible confi gurations.

t3 a1 lme i the system be in configuratiou q for the
simulation of the behaviour of a system in thermal
equilibriurn. A candidate r for the configuration at
time i+l is generated randomly and accepted
according to:
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In fig.3-6, nonlinear and linear output surfaces of the

slstem, and model are sholvn respectively. The

$'stem output, the model output and the errors in the

range of 0-100'h samples are shoun in fig.7.

Furthermore, sum-squared error is shonn in fig.E. It

is seen that the sum'squared error ler-v close to zero.

In fig.9 and fig.10, matimum filness and the average

fitness are sholvn respectively.
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Fig.6 Linear outPut of the model.
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Fig.3. Nonlinear output of the s!'stem.

Fig.?. S]'stem outPut, model output and error
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Fig.8. Sum-squared error.
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VI. RESI.JLTS

A nonlinear system modelling with fuzzy neural
nehvork using genetic algorithms rvith simulated
annealing has been derived in this paper. The
ur*nonn parameters or rveights of the model rrere
estimated by using genetic algorithms l.ritb simulated
annealing. Simulation results indicate that the model
approaches system nith the error close to zero. Even
though the gradient based algorithms are succrsful
for uaining firzt'neural net$orlq genetic algorithms
rvith sirnulated annealing is more appropriate since it
is not risky in many peaked search spaces.
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