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Abstract
Impairments caused by timing jitter are one of the most im-
portant performance limiting factors of digital converters
while sampling under Nyquist rates. In this paper, the effect
of jitter in such cases is shown and a new method to estimate
and reconstruct the timing jitter errors is presented. The
system model is based on the estimation of jitter times with
an annihilating filter and reconstruction of the signal using
Slepian functions without the knowledge of input frequen-
cies. It is shown that, a significant improvement on SNR is
achieved.

1. Introduction
One of the key parameters that digital converters need to

comply with is jitter, caused by imperfections of sampling clock
of the analog to digital converter (ADC) [1]. Moreover, when
it comes to sub-Nyquist sampling, which recently has been at-
tracting more attention due to the discovery of new sampling
techniques such as compressed sampling, the sampling block
may become unusable due to jitter. Although, jitter reconstruc-
tion for Nyquist sampled band-limited signals is a well-studied
topic in the literature [1, 2, 3, 4, 5], there are limited studies for
jitter analysis and mitigation for sub-Nyquist sampled signals
[6].

A straightforward linear time variant implementation
method is proposed in [2]. However, due to the constraints
set to the jitter values, it is suitable for practical applications.
A jitter compensation system model has been proposed in [3]
in which to estimate the jittered sampling instants, a clean ref-
erence tone is added to the incoming signal before sampling
circuitry. This work has been focused on narrowband Nyquist
sampled signals. A jitter tracking algorithm is proposed in [4]
which uses the spectral characteristics of jitter. Instead adding
a reference tone, a modulated high-frequency reference signal
is injected to the received signal in[5]. It is shown that the pro-
posed method is applicable even for wide-band signals. Jittered
sub-Nyquist sampling is studied in [6]. A reference tone, simi-
lar to [3], is added to the sub-sampled signal before conversion.
It is assumed that the sub-sampled incoming signal is a narrow-
band signal and the reference tone is located into low-frequency
zone where the reference tone is sufficiently separated from the
incoming signal. However, method proposed in [6] is not appli-
cable for sub-Nyquist sampled wide-band signals.

In this paper, a novel jitter estimation and signal reconstruc-
tion method is presented for jittered sub-Nyquist sampled sig-
nals. Effects of jitter in sub-Nyquist sampled signals is ana-
lyzed and mathematical relation between Nyquist sampled and

sub-Nyquist sampled signals is derived. The proposed system
model is investigated deeply and compared with the other meth-
ods in the literature. It is shown that the proposed model is ca-
pable of estimating and mitigating the sampling jitter without
any initial information, except the signal sub-band number and
sampling frequency. The proposed model is based on detecting
the sampling instants with an annihilating filter, then carrying
the jittered sub-Nyquist sampled signal to base-band and miti-
gating the jitter by using Slepian functions.

2. Jitter analysis
Consider a real and continuous time sine-wave

x(t) = A sin(2πfit+ θ) (1)

with amplitude of A, frequency fi, and phase angle θ. If the
signal is sampled with a sampling rate of fs = 1/Ts, the uni-
form sampling instants will be tn = nTs, n ∈ Z. However, in
some cases due to timing jitter effects sampling instants may be
shifted over time as

τn = nTs + jn, n ∈ Z (2)

where jn is the timing jitter associated with the nth sample and
modeled as a real valued random process with Loretzian shaped
spectrum, having zero mean and variance σ2 [5]. Let us denote
the jitter error as

ξ(n) = x(nTs)− x(nTs + jn). (3)

It is clear that ξ(n) represents the voltage difference caused
by the jitter in jn seconds, and approximated to the derivative
of the signal as [1]

ξ(n) = jn
∂x(τn)

∂τn
. (4)

In order to show the effect of jitter error on signal to noise
ratio (SNR), root mean square (RMS) value of ξ(n) is calcu-
lated as

R[ξ(n)] = jrR
[∂x(tn)

∂tn

]
(5)

where R[·] is the RMS operator and jr is the RMS jitter value.
Hence the RMS jitter of x(t) is R[ξ(n)] = jr

√
2πfiA. It is

straightforward to calculate the SNR of a jittered sampled sine-
wave as

SNR(dB) = −20 log(jr2πfi) (6)
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Figure 1. Jitter error comparison between ξn and ξan, where gn
and mn are the samples of x(t) with and without jitter, respec-
tively, and dn is the jittered sample where the input signal is
xa(t)

3. Jittered sub-Nyquist sampling
In some applications, the input analog signal is sampled un-

der Nyquist rate such as, direct IF sampling, compressed sam-
pling or multi-coset sampling. Input signal frequency is larger
than half of sampling frequency fi > fs/2 in these type of
cases. Sampling the signal with fs in such a scenario will shift
the signal to the baseband due to the aliasing effect where the re-
lationship between the input frequency fi and aliased frequency
fai is

fi = κfs + fai , f
a
i < fs/2, (7)

κ is the number of the sub-band where the input signal is lo-
cated.

In order to analyze jitter error on sub-Nyquist sampling, re-
lation between fi and SNR needs to be revealed. For simplicity,
let us denote the jittered clock as a sine-wave of frequency fs.
RMS of clock phase noise φr is related to the jitter timing as
φr = 2πfsjr . Now it is possible to express the SNR value as a
function of ADC clock frequency and input signal frequency.

SNR(dB) = −20 log
(
φr
fi
fs

)
(8)

By analyzing (4) and (8), the same amount of timing jitter
causes much more jitter error while sampling sub-Nyquist rate.
An example is depicted in Fig.1, where the aliased signal is
represented as

xa(t) = A sin(2πfai t+ θ) (9)

and gn, dn, and mn stand for the jittered samples of x(t), jit-
tered samples as if the input signal was xa(t), and the jitterless
uniform samples, respectively. Due to the rapid changes in x(t),
jitter error increases ξn > ξan when input frequency increases.

To show the SNR degradation caused by jitter error while
sub-Nyquist sampling for different input frequencies simula-
tion and theoretical results are plotted in Fig.2, where the in-
put signal is x(t) = sin(2πfiτn) and fi = fai + κfs for
fs = 100MHz, fai = 10MHz, and jr = 10, 25, 50, 100ps.
It is shown that, increase in input frequency fi results in rapid
decrease on SNR. Even a small jitter may cause the ADC block
unusable for sub-Nyquist sampling cases. Note that, these
amount of jitter RMS values are largely within ADCs tolerance
range.

Figure 2. SNR degradation due to sampling clock jitter vs κ
values where κ is the sub-band number of the input signal fre-
quency fi = κfs + fai , fai < fs/2

4. Reconstruction
The goal of jitter reconstruction is to reach the jitterless

samples mn. The starting point for jittered Nyquist rate sam-
pled signals is dn, however, when it comes to jittered sub-
Nyquist sampling, gn is the input. The proposed reconstruction
method has two steps. Goal of the first step is to convey the
jittered samples gn, to baseband jittered samples d∗n. Second
step is the jitter reconstruction to reach jitterless samples m∗n.
No initial information is assumed to be known, except κ and
fs. The proposed system model has been shown in Fig.3. The
main contribution of this study is the proposed system for jitter
estimation and signal reconstruction. As seen in Fig.3 instead
of a single branch of sampling, two coherent sampling lines
added to transfer the jittered samples to baseband and recon-
struct the jitter. Although additional sampling branches increase
the complexity of the sampling block, the total SNR improve-
ment achieved after reconstruction can be more than 25dB.

4.1. Single sine-wave

Let us start with a single sine-wave signal x(t) of frequency
fi and amplitude A. Sub-sampling x(t) with fs where fi =
κfs+fa for fa < fs/2 will lead to get the same samples while
sampling xa(t) = A sin(2πfat) with fs. These samples can
be expressed as mn

mn = A sin(2πfanTs), n ∈ Z (10)

Due to timing jitter gn will be

gn = A sin(2πfiτn), n ∈ Z (11)

while dn can be expressed as

dn = A sin(2πfaτn)

= A sin
(
2π(fi − κfs)τn

)
, n ∈ Z (12)

Solving dn by using trigonometric identities, one will get

dn = gn cos(2πκfsτn)− hn sin(2πκfsτn) (13)

where hn = αn
√

Ψn − g2n for Ψn = A2 and αn = ±1 which
is related to the slope of x(t) at τn.
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Figure 3. The proposed system model

4.2. Two sine-waves

If the input signal x(t) is sum of two sine-waves

x(t) = A1 sin(2πf1t) +A2 sin(2πf2t) (14)
where f1 = κfs + fa1 and f2 = κfs + fa2 , for fa1 < fs/2,
fa2 < fs/2, jitterless samples mn and jittered sampled samples
gn and dn can be expressed as

mn = A1 sin(2πf1nTs) +A2 sin(2πf2nTs) (15)
gn = A1 sin(2πf1τn) +A2 sin(2πf2τn) (16)
dn = A1 sin(2πfa1 τn) +A2 sin(2πfa2 τn). (17)

By solving dn according to fa1 = f1−κfs and fa2 = f2−κfs,
one will get

dn = gn cos(2πκfsτn)− hn sin(2πκfsτn) (18)
where

hn = αn
√

Ψn − g2n (19)
and

Ψn = A2
1 +A2

2 + 2A1A2 cos
(
2π(fa1 − fa2 )τn

)
. (20)

4.3. Multiple sine-waves

Let us represent x(t) as the sum of M sine-waves

x(t) =

M∑
k=1

Ak sin(2πfkt) (21)

where input frequencies are larger than fs but located in the
same sub-band κ. Passing directly to the relation between dn
and gn one will find that

dn = gn cos(2πκfsτn)− hn sin(2πκfsτn) (22)
where

hn = αn
√

Ψn − g2n (23)
and

Ψn =

M−1∑
i=1

M∑
j=i+1

A2
i + 2AiAj cos

(
2π(fi − fj)τn

)
. (24)

4.4. Proposed system model

It is clear that the relationship between gn and dn is related
to the jittered sampling instants τn, κ, and hn. Having a closer
look at Ψn and αn, one will see that Ψn is the square of the
envelope of x(t)

Ψ = z
[
x(t)

]2 (25)

where z[·] represents the envelope of the signal and αn depends
on the slope of x(t) at jittered sampling times τn and can be
expressed as

αn = sgn[∂x(τn)/∂τn] (26)

where sgn[·] is the signum function. In order to estimate Ψn

and αn at jittered sampling instants, two additional sampling
branches, which use the same clock with the main sampling
branch, are added as shown in Fig.3. Consequently, with the
estimation of jittered sampling times τn, reconstruction to dn
become possible.

4.5. Estimation of sampling instants

Sampling can be modeled by use of periodic impulse train.
Signal after a jittered impulse-train sampler becomes a stream
of diracs

xp(t) =
∑
n∈Z

x(τn)δ(t− τn). (27)

By considering the periodic extension of stream of dirac func-
tions, the signal can be represented as

xp(t) =

∞∑
k=−∞

Xke
2ikπt/Ts (28)

where the Fourier coefficients are

Xk =

N∑
n=1

x(τn)e−2ikπτn/Ts , (29)

linear combination of N exponentials.
Consider convolving Xk with an annihilating filter having

N zeros at

un = e−2iπτn/Ts (30)

that is [7]
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Figure 4. PSD of a-jitterless sub-sampled x(t), b-jittered sub-sampled x(t), c-output of the first reconstruction step, d-reconstructed
signal

A(z) =

N∏
n=1

(1− unz−1) =

N∑
n=0

ϕnz
−n. (31)

Each exponential of Xk will be zeroed out by the roots of ϕn.
The problem then becomes to find the roots that match Xk.

N∑
n=0

ϕnXk−n =

N∑
n=0

N∑
m=1

x(τm)uk−nm ϕn (32)

=

N∑
m=1

x(τm)ukm

N∑
n=0

ϕnu
−n
m = 0 (33)

Zeros of A(z) uniquely define τn. Solving the above equation
is related to Prony’s method [7].

4.6. Jitter mitigation

A band-limited signal s(t) is uniquely represented by its
samples by

s(t) =
∑
n∈Z

s(nTs)sinc(t− nTs) (34)

where

sinc(t− nTs) =
sin
(
π(t− nTs)

)
π(t− nTs)

,−∞ < t <∞ (35)

is the orthogonal basis function. However, for time-limited sig-
nals sinc(·) may not the best kernel function, since significant

part of the energy lies out of the time limit of s(t), which causes
reconstruction errors. Among all the orthogonal basis functions
defined in a limited time, Slepian functions have the highest
energy concentration in a limited band, and vice versa. Slepian
functions are the solution of the problem of concentrating a ban-
dlimited signal into a time interval.

p(t) =
1

2π

∫ +W

−W
P (ω)eiωtdω (36)

where p(t) represents Slepian function and W is the bandwidth
of the p(t). Slepian functions optimize the concentration of
time-frequency uncertainty principle. They are eigenfunctions
of a kernel that depends on the time-frequency product TW .∫ [ sinTW (t− t′)

π(t− t′)

]
p(t′)dx′ = λp(t) (37)

where

λ =

∫ +T

−T g2(t)dt∫ +∞
−∞ g2(t)dt

(38)

Due to the spectral efficiency reasons, Slepian functions are
considered through the jitter reconstruction process. Jittered
sampled signal reconstruction procedure by Slepian functions
is deeply analyzed in [8]. We refer [8] and its references for
further information.

5. Simulations
In this section, the performance of the proposed method is

demonstrated by applying it to a jittered sub-Nyquist sampled
signal
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Figure 5. Transmitted OFDM signal and jitter mitigation per-
formance of the proposed model and other methods from [3]
and [6] when 150ps RMS jitter is applied to the sub-sampled
signal.

x(t) =

2∑
i=1

Ai sin(2πfit) (39)

where f1 = 1012MHz, f2 = 1017MHz, and fs = 100MHz.
1ns of RMS jitter value is introduced to sampling clock. Power
spectral densities (PSD) of the results are shown in Fig.4. PSD
of jitterless sub-sampled x(t) can be seen in Fig.4-a. Note
that no noise is introduced to the input signal. Jittered sub-
sampling demolishes x(t), as shown in Fig.4-b where SNR
drops to −1dB. After the first step of the proposed method,
SNR of the reconstructed signal d∗n is calculated as 20.35dB,
which is ∼ 21dB of improvement. After the second step, SNR
increases to 25.38dB which concludes a total 26dB of SNR im-
provement. Note that, the performance of the proposed method
is directly related to the performance of the annihilating filter.

In order to see the effectiveness of the proposed sys-
tem model, a simulation environment consists of a wide-band
OFDM signal with 1024 subcarriers transmitted at 2.4GHz is
deployed. Sampling frequency is set to 100MHz and SNR is
20dB. Jittered sub-Nyquist sampling is performed to the re-
ceived signal with different jitter RMS values. The proposed
jitter mitigation technique with two other methods presented in
[3] and [6] are applied to the jittered samples. BER results are
investigated while increasing the jitter RMS value from 25ps to
200ps, which can be accepted as one of the most challenging
case. The transmitted OFDM signal can be seen in Fig. 5 with
the output signals of three compared methods when 150ps RMS
jitter is applied to the sub-sampled signal. BER results are de-
picted in Fig. 6. Performance of the proposed method outper-
forms the methods in [3] and [6]. It is natural, because both
methods are developed for narrow-band signals. It is worth say-
ing that, although jitter noise spectrum is assumed to be Loret-
zian shaped, the method proposed in this paper is not restricted
to a specific type of jitter noise.

6. Conclusion
In this paper, effects of jitter on sub-Nyquist sampled sig-

nals are investigated and a complete jitter reconstruction system

Figure 6. BER results of the proposed method and methods
from [3] and [6] are compared for different jitter RMS values.

model for jittered sub-Nyquist sampled signals is presented. No
initial information except the sampling rate and the sub-band of
the input signal is needed. It is shown that more than 25dB of
SNR improvement is achieved.
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