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Abstract

In this paper,  a fast solver for generation allocation 

problem including transmission losses using a Hopfield 

Neural Network (HNN) approach is presented. The 

proposed HNN is distinguished by a direct computation 

method mapped to the generation allocation problem of 

thermal generators commonly known as economic dispatch 

(ED). The developed HNN employs a linear input-output 

model for the transfer function of neurons. Formulations for 

solving the ED problem are explored, through the 

application of these formulations; direct computation 

instead of iterations for solving the problem without losses 

becomes possible. Not like the usual Hopfield methods, 

which select the weighting factors of the energy function by 

trials, the proposed method determines the corresponding 

factors only by calculations. To include the transmission 

losses, a dichotomy method is combined to the Hopfield 

Neural Network iteratively. The effectiveness of the 

developed method is identified through its application to the 

15-unit system. Computational results manifest that the 

method has a lot of excellent performances. 

1. Introduction 

The objective of generation allocation problem is to 

minimize production cost while satisfying demand and working 

area constraints for a given combination of active units. Aside 

from using the solutions of the ED (combination of units with 

the least production cost) for its own merits in system operation, 

they are used to guide the solution method that solves the 

combinatorial part of the unit commitment problem. When the 

combinatorial part of the unit commitment problem is solved, 

solutions from the ED are used to estimate the quality of 

different unit combinations. 

In this paper the construction and implementation of an exact 

method using the Hopfield Neural Network that solves the 

economic dispatch problem is presented. The performance of 

such method with respect to time and solution quality is a 

crucial part in the solution process of solving the unit 

commitment problem. The use of the Hopfield neural network 

methods to solve ED is therefore justifiable if the method 

produces optimal solutions and outperforms near-optimal solver 

with respect to computation time. 

2. Problem Formulation 

Generation allocation is defined as the process of allocating 

generation levels to the thermal generating units in service 

within the power system, so that the system load is supplied 

entirely and most economically [1] and [2]. The objective of the 

generation allocation or economic dispatch ED problem is to 

calculate, for a single period of time, the output power of every 

generating unit so that all demands are satisfied at minimum 

cost, while satisfying different technical constraints of the 

network and the generators. The system consists of N generating 

units connected to a single bus-bar serving an electrical load D. 

The input to each unit shown as Fi, represents the generation 

cost of the unit. The output of each unit Pi is the electrical 

power generated by that particular unit. The total cost of the 

system is the sum of the costs of each of the individual units. 

The essential constraint on the operation is that the sum of the 

output powers must equal the load demand. 

The standard ED problem can be described mathematically 

as an objective with two constraints as: 
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where, N is the total number of units in service; Pi is the real 

power output of i-th generator (MW); FT is the total operating 

cost ($ /h); Fi (P i) is the operating cost of unit i ($ /h); D is the 

total demand (MW); L is the transmission losses (MW); Pi
min,

Pi
max are the operating power limits of unit i (MW).

The fuel cost function or input-output characteristic of the 

generator may be obtained from design calculations or from 

heat rate tests. Many different formats are used to represent this 

characteristic. The data obtained from heat rate tests or from the 

plant design engineers may be fitted by a polynomial curve. It is 

usual that, quadratic characteristic is fit to these data. A series of 

straight-line segments may also be used to represent the input-

output characteristic [1]. The fuel cost function of a generator 

that usually used in power system operation and control 

problem is represented with a second-order polynomial. 

 Fi(Pi)  = ai + bi Pi + ci Pi
2   (3) 

where, ai, bi and ci are the cost coefficients (non-negative 

constants) of the i th generating unit. 

For some generators such as large steam turbine generators, 

however, the input-output characteristic is not always as smooth 

as Eq. (3). Large steam turbine generators will have a number of 
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steam admission valves that are opened in sequence to obtain 

ever-increasing output of the unit [3], [4]. 

3. Solving Economic Dispatch with Hopfield Neural 

Network  

The EDP has been widely studied and reported by several 

authors in books and journals on power system analysis. Many 

techniques have been developed to solve this problem, e.g. the 

lambda-iterative method, gradient technique, Interior Point, 

Lagrange technique, linear programming, Quadratic 

Programming, Dynamic Programming, Simulated Annealing, 

Genetic algorithm (GA), Evolutionary Programming (EP), 

Neural Network and methods combining two or more of the 

above methods [6] and [7]. Most of these methods often suffer 

from the large amount of computational requirement or give just 

a good estimate (near optimal) of the solution to the ED 

problem.

The continuous or deterministic model of the Hopfield 

Neural Network is based on continuous variables. The output 

variable of neuron i has the range yi
0 < yi < yi

1 and the input-

output function is a continuous and monotonically increasing 

function of the input xi to neuron i. The model is a mutual 

coupling neural network and of non-hierarchical structure. 

Architecture of a HNN of three neurnes sample is shown in 

figure 1. The processing elements are modeled as a neurone in 

conjunction with feedback circuits to model the basic 

computational features of neurons and synapses connecting 

different neurons. Usually the neurones have sigmoidal 

monotonic input-output relations. 

Fig. 1. Architecture of the Hopfield Neural Network

The dynamic characteristic of each neuron can be described 

by the following differential equation [9] and [10]. 
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where xi is the neuron input; yi is the neuron output; !ii is the 

self-connection conductance of neuron i; !ij is the connection 

conductance between  neuron i  and neuron j; Ii is the external 

conductance of neuron i

The output of neuron i is given by: 

 yi = fi (xi)   (5) 

where fi (xi) is the input-output function of the neuron i.

The energy function of the continuous Hopfield model can be 

defined as:
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The time derivative of the energy function can be proved to 

be negative [11]. Therefore, in the computation process the 

model state always moves in such a way that energy function 

gradually reduces and converges to a minimum. 

The Hopfield model of neural networks [12] has been 

employed to solve the ED problem for units having continuous 

or piece wise quadratic fuel cost function [9] and [13], and even 

for units having prohibited zones constraint [14, 15]. The 

conventional Hopfield model belongs to the kind of continuous 

and deterministic model, and the input-output relationship for its 

neurons is described by a modified sigmoidal function. Due to 

the use of sigmoidal function in the conventional Hopfield 

model, in solving the ED problems, a method involving 

numerical iterations is inevitably applied; this numerical 

iteration method often suffers from large amount of 

computational requirements. Adopting a modified sigmoidal 

function causes two other problems. The first, it incurs 

unreasonable or incorrect generation dispatch, which is 

attributable to the serious saturation phenomena existing in the 

input-output relationship represented by the sigmoidal function. 

The second; it is troublesome to select shape constant of the 

sigmoidal function.

A fast Hopfield Neural Network method to solve the ED 

problem is presented. The method employs a linear input-output 

model for the neurons. Formulations for solving the ED problem 

are explored. Through the application of these formulations, 

direct computation instead of iterations for solving the problem 

becomes possible. Not like the usual Hopfield methods, which 

select the weighting factors of the energy function by trials, this 

method determines the corresponding factors by calculation. 

The adoption of a linear model describing the input-output 

relationship of the neuron has resulted in the avoidance of the 

aforementioned problems.

To solve the ED problem using the Hopfield method, energy 

function including both power mismatch, Pm and total fuel cost 

F is defined as follows: 

+ , + ,+ ,
+ , + ,

2

1

2

1

2 .

2

N

ii

N

i i i i ii

E A D L P

B a b P c P

!

!

! $ * $

$ $

"

"
   (7) 

A and B: introduce the relative importance of their respective 

associated terms. 

Comparing Eq. (7) with Eq. (6), we get: 

!ii = " A " B . ci   (8) 

!ij = " A   (9) 

 Ii = A (D + L) – B (bi /2)   (10) 
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At this stage the transmission losses L can be neglected and 

reconsidered later in section 4. 

Substituting Eq. (8), Eq. (9) and Eq. (10) into Eq. (4), the 

dynamic equation becomes, 

' ( 2)( )i m i idx dt AP B dF dP! *    (11) 

Application of the conventional Hopfield method to the ED 

problem, the power output value can be represented by the 

output yi of neuron i using a modified sigmoidal function, 

described as follows [13] and [14]: 

+ ,+ , + ,+ ,min max min
0

( )

. 1 2 1 tanh

i i i i

i i i i

P y f x

P P P x -

! !

! $ * $
   (12) 

where #0 is the shape constant of the sigmoidal function. 

To avoid the problems resulting from curve saturation, a 

linear model is used to describe the input-output relationship for 

the neuron instead of the sigmoidal function. Linear transfer 

function of the i-th neuron is defined as follows: 
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Substituting Eq. (13) in Eq. (11) the dynamic equation becomes: 

+ , + ,+ ,,
1 22 2i m i i i i idx dt AP B b c K x K! * $ $    (14) 

with + , + ,max min
1 max mini i iK P P x x! * *

min
2 1 mini i iK P K x! *

Solving Eq. (14) the neuron’s input function, xi(t’) is obtained 

as: 

+ ,+ , + ,
,

3,
4 3 4 3( ) (0) iK t
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with:     

3 1i i iK Bc K! *    (16) 

+ ,4 22i m i i iK AP B b Bc K! * *    (17) 

From Eq. (13), the neuron’s output function, yi = Pi(t’),  is 

obtained as:  
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where KAB = A/B

The second term in Eq. (18) decays exponentially, finally 

becomes vanishingly small and eventually setting t’= $, Eq. 

(18) gives,

+ ,( ) ( ) 2 2i i AB m i iP y K P b c2 ! 2 ! *    (19) 

Here Pi($) represents the optimal generation level of unit i, and 
the final neuron output yi which is the required solution. 
Back substituting of Eq. (19) in Eq. (18), a more simple formula 
for the generation function is given as:

+ ,
,

3,( ) ( ) (0) ( ) iK t
i i i iP t P P P e! 2 $ * 2    (20) 

where Pi(0) is obtained from Eq. (18) by letting t’= 0, to give: 

2 1(0) (0)i i i iP K K x! $    (21) 

It should be noted here that t’ is not representing real time, it is a 
dimensionless variable.  
Using the power mismatch definition and Eq. (28) we obtain: 
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Eqs.  (19) through Eq. (22) constitute the Hopfield model for 

the economic dispatch problem. A non iterative direct 

computation process is, therefore, possible. 

4. Inclusion of Transmission Losses in a Hybrid 

Algorithm 

The transmission losses L can be either given from a load 

flow study or approximated by traditional representation using B

coefficients: 

0 001 1 1

N N N

i c ij j i ii j i
L PB P B P B

! ! !
! $ $" " "    (23) 

A dichotomy solution method for solving the economic 

dispatch including transmission losses combined to the Hopfield 

Neural Network is presented in the following steps: 

Step1: Initialization of the interval search [Cr3  Cr1].  Where 

Cr3 and Cr1 are the estimation of total production when 

neglecting losses and when including losses, respectively.  

3 : is a pre-specified tolerance; ! is maximum value losses to 

load ratio.

Initialize the iteration counter k =1.

Cr3
k = D ;

Cr1
k = Cr3

k + ! * Cr3
k ;

Cr2
k = Cr3

k + (Cr1
k-Cr3

k) / 2 ; 

Step2: Determine the optimal generators’ power outputs 

, 1,...,iP i N!  using the Hopfield neural network algorithm, by 

neglecting losses and setting the power demand as Cr k = Cr2
k ;

Step3: Calculate the transmission losses Lk for the current 

iteration k using Eq. (23); 
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Step 4: if Cr1
k -Cr3

k < 3 , stop otherwise go to step 5; 

Step5: if Cr2
k-Lk < D, update Cr3 and Cr2 for the next iteration 

as follows: 

Cr3
k+1 = Cr2

k

Cr2
k+1=Cr2

k + ( Cr1
k - Cr2

k ) /2; 

Replace k by k+1 and go to step 2; 

Step 6: if Cr2
k-Lk > D, update Cr1 and Cr2 for the next iteration 

as follows: 

Cr1
k+1=Cr2

k

Cr2
k+1=Cr2

k - ( Cr2
k – Cr3

k ) /2; 

Replace k by k+1 and go to step 2. 

5. Results and Discussion 

To demonstrate the performance of the Hopfield based ED 

solver, A 15-unit test system [16] is used, where the 

convergence criteria considered here is the unit generation 

constraints must be not violated. The system consists of 15-units 

where data is given in table1. For comparison the case of a load 

demand of 2650 MW is considered as in [16].  

The total operating cost of the system is represented by the 

following polynomial, 

+ ,2

1 1
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N N

T i i i i i i ii i
F F P a b P c P
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The polynomials coefficients are listed in table 1, along with 

generator minimum and maximum operating limits. 

The loss coefficients matrix Bc, vector B0 and constant B00 are

taken from [16]. 

The sixth column of table 1 shows the optimal generators’ 

power outputs when the transmission losses is neglected. Total 

production cost is $ 32542.30. The problem was carried out on 

Pentium M 1.73 MHz using the presented Hopfield method with 

xmin = - 0.1, xmax = 0.1 and Pm = 0.0001. The computation time 

was about 0.14 s. 

The same test system was solved in [16], the total production 

cost is obtained as $ 32549.8. It can be seen that the presented 

Hopfield approach could provide a better solution within a much 

shorter time.    

The last column of table 1 shows the optimal generators’ 

power outputs when the transmission losses is taken into 

account. The pre-specified tolerance was taken as 0.001. Total 

production cost is $ 32880.42, and the transmission losses equal 

to 32.1138 MW. The computation time was about 0.51 s for 21 

iterations.

Table 1. Input data of  unit System and the computational results 
1

min

iP

(MW)

max

iP

(MW)

a

$/hr

b

$/MWhr

c

$/MW2hr
iP

(MW)

iP

(MW)

150 455 671.03   10.07     0.000299   455 455 

150 455 574.54   10.22     0.000183   455 455 

20 130 374.59 8.8      0.001126 130 130 

20 130 374.59 8.8      0.001126 130 130 

150 470 461.37   10.4     0.000205 317.8331      348.77 

135 460 630.14    10.1      0.000301 460. 460. 

135 465 548.2     9.87      0.000364 465 465 

60 300 227.09   11.5     0.000338 60 60 

25 162 173.72 11.21     0.000607 25 25 

20 160 175.95    10.72     0.001203 20 20 

20 80 186.86   11.21    0.003586 20 20 

20 80 230.27    9.9       0.005513 57.1659      58.32 

25 85 225.28    13.12     0.000371 25 25 

15 55 309.03    12.12     0.001929 15 15 

15 55 323.79   12.41 0.004447   15 15 

  Transmission losses L (MW) 0 32.11 

Total production power generation 

(MW)
2650 2682.09 

  Total production cost FT ($) 32542.30 32880.42 

6. Conclusion 

 We have developed a fast-computation solver for ED 

problems solution with transmission losses, the sover is a hybrid 

Dichotomy - Hopfield neural network method. The developed 

method overcomes the drawbacks of the conventional segmoidal 

function based Hopfield neural network. This is done by 

adopting a linear input/output transfer function, which resulted 

in a superior Hopfield neural network as one calculation process 

is required. This led to a very short computing time and 

suitability for on-line usage. The proposed method is relatively 

simple, straightforward, efficient, and easy to apply and requires 

no training. It is so far: (i) the determination of the energy 

function weighting factors is not necessary, (ii) it is mutual 

coupling network and nonhierarchical structure. Its connective 

conductances and external input can be determined directly by 

employing system data. 
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